{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Ring.Kernel where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Algebra.Ring.Base
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.Ideal
private
variable
ℓ : Level
module _ {{R S : Ring {ℓ}}} (f′ : RingHom R S) where
open RingHom f′ renaming (map to f)
open HomTheory f′
open RingStr ⦃...⦄
open isIdeal
open Theory
private
instance
_ = R
_ = S
_ = snd R
_ = snd S
kernelSubtype : ⟨ R ⟩ → hProp ℓ
kernelSubtype x = (f x ≡ 0r) , isSetRing S _ _
kernelIsIdeal : isIdeal R kernelSubtype
+-closed kernelIsIdeal =
λ fx≡0 fy≡0 → f (_ + _) ≡⟨ isHom+ _ _ ⟩
f _ + f _ ≡⟨ cong (λ u → u + f _) fx≡0 ⟩
0r + f _ ≡⟨ cong (λ u → 0r + u) fy≡0 ⟩
0r + 0r ≡⟨ 0Idempotent S ⟩
0r ∎
-closed kernelIsIdeal =
λ fx≡0 → f (- _) ≡⟨ -commutesWithHom _ ⟩
- f _ ≡⟨ cong -_ fx≡0 ⟩
- 0r ≡⟨ 0Selfinverse S ⟩
0r ∎
0r-closed kernelIsIdeal = f 0r ≡⟨ homPres0 ⟩ 0r ∎
·-closedLeft kernelIsIdeal = λ r fx≡0 →
f (r · _) ≡⟨ isHom· _ _ ⟩
f r · f (_) ≡⟨ cong (λ u → f r · u) fx≡0 ⟩
f r · 0r ≡⟨ 0RightAnnihilates S _ ⟩
0r ∎
·-closedRight kernelIsIdeal = λ r fx≡0 →
f (_ · r) ≡⟨ isHom· _ _ ⟩
f _ · f r ≡⟨ cong (λ u → u · f r) fx≡0 ⟩
0r · f r ≡⟨ 0LeftAnnihilates S _ ⟩
0r ∎
kernel : {{R S : Ring {ℓ}}} (f′ : RingHom R S) → IdealsIn R
kernel f′ = kernelSubtype f′ , kernelIsIdeal f′