{-# OPTIONS --safe #-}
module Cubical.Functions.Embedding where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence using (ua; univalence; pathToEquiv)
open import Cubical.Functions.Fibration
open import Cubical.Data.Sigma
open import Cubical.Functions.Fibration
open import Cubical.Functions.FunExtEquiv
open import Cubical.Relation.Nullary using (Discrete; yes; no)
open import Cubical.Structures.Axioms
open import Cubical.Reflection.StrictEquiv
open import Cubical.Data.Nat using (ℕ; zero; suc)
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' ℓ'' : Level
A B C : Type ℓ
f h : A → B
w x : A
y z : B
isEmbedding : (A → B) → Type _
isEmbedding f = ∀ w x → isEquiv {A = w ≡ x} (cong f)
isPropIsEmbedding : isProp (isEmbedding f)
isPropIsEmbedding {f = f} = isPropΠ2 λ _ _ → isPropIsEquiv (cong f)
isEmbedding→Inj
: {f : A → B}
→ isEmbedding f
→ ∀ w x → f w ≡ f x → w ≡ x
isEmbedding→Inj {f = f} embb w x p
= equiv-proof (embb w x) p .fst .fst
hasPropFibers : (A → B) → Type _
hasPropFibers f = ∀ y → isProp (fiber f y)
hasPropFibersOfImage : (A → B) → Type _
hasPropFibersOfImage f = ∀ x → isProp (fiber f (f x))
_↪_ : Type ℓ' → Type ℓ'' → Type (ℓ-max ℓ' ℓ'')
A ↪ B = Σ[ f ∈ (A → B) ] isEmbedding f
hasPropFibersIsProp : isProp (hasPropFibers f)
hasPropFibersIsProp = isPropΠ (λ _ → isPropIsProp)
private
lemma₀ : (p : y ≡ z) → fiber f y ≡ fiber f z
lemma₀ {f = f} p = λ i → fiber f (p i)
lemma₁ : isEmbedding f → ∀ x → isContr (fiber f (f x))
lemma₁ {f = f} iE x = value , path
where
value : fiber f (f x)
value = (x , refl)
path : ∀(fi : fiber f (f x)) → value ≡ fi
path (w , p) i
= case equiv-proof (iE w x) p of λ
{ ((q , sq) , _)
→ hfill (λ j → λ { (i = i0) → (x , refl)
; (i = i1) → (w , sq j)
})
(inS (q (~ i) , λ j → f (q (~ i ∨ j))))
i1
}
isEmbedding→hasPropFibers : isEmbedding f → hasPropFibers f
isEmbedding→hasPropFibers iE y (x , p)
= subst (λ f → isProp f) (lemma₀ p) (isContr→isProp (lemma₁ iE x)) (x , p)
private
fibCong→PathP
: {f : A → B}
→ (p : f w ≡ f x)
→ (fi : fiber (cong f) p)
→ PathP (λ i → fiber f (p i)) (w , refl) (x , refl)
fibCong→PathP p (q , r) i = q i , λ j → r j i
PathP→fibCong
: {f : A → B}
→ (p : f w ≡ f x)
→ (pp : PathP (λ i → fiber f (p i)) (w , refl) (x , refl))
→ fiber (cong f) p
PathP→fibCong p pp = (λ i → fst (pp i)) , (λ j i → snd (pp i) j)
PathP≡fibCong
: {f : A → B}
→ (p : f w ≡ f x)
→ PathP (λ i → fiber f (p i)) (w , refl) (x , refl) ≡ fiber (cong f) p
PathP≡fibCong p
= isoToPath (iso (PathP→fibCong p) (fibCong→PathP p) (λ _ → refl) (λ _ → refl))
hasPropFibers→isEmbedding : hasPropFibers f → isEmbedding f
hasPropFibers→isEmbedding {f = f} iP w x .equiv-proof p
= subst isContr (PathP≡fibCong p) (isProp→isContrPathP (λ i → iP (p i)) fw fx)
where
fw : fiber f (f w)
fw = (w , refl)
fx : fiber f (f x)
fx = (x , refl)
hasPropFibersOfImage→hasPropFibers : hasPropFibersOfImage f → hasPropFibers f
hasPropFibersOfImage→hasPropFibers {f = f} fibImg y a b =
subst (λ y → isProp (fiber f y)) (snd a) (fibImg (fst a)) a b
hasPropFibersOfImage→isEmbedding : hasPropFibersOfImage f → isEmbedding f
hasPropFibersOfImage→isEmbedding = hasPropFibers→isEmbedding ∘ hasPropFibersOfImage→hasPropFibers
isEmbedding≡hasPropFibers : isEmbedding f ≡ hasPropFibers f
isEmbedding≡hasPropFibers
= isoToPath
(iso isEmbedding→hasPropFibers
hasPropFibers→isEmbedding
(λ _ → hasPropFibersIsProp _ _)
(λ _ → isPropIsEmbedding _ _))
module _
{f : A → B}
(isSetB : isSet B)
where
module _
(inj : ∀{w x} → f w ≡ f x → w ≡ x)
where
injective→hasPropFibers : hasPropFibers f
injective→hasPropFibers y (x , fx≡y) (x' , fx'≡y) =
Σ≡Prop
(λ _ → isSetB _ _)
(inj (fx≡y ∙ sym (fx'≡y)))
injEmbedding : isEmbedding f
injEmbedding = hasPropFibers→isEmbedding injective→hasPropFibers
retractableIntoSet→isEmbedding : hasRetract f → isEmbedding f
retractableIntoSet→isEmbedding (g , ret) = injEmbedding inj
where
inj : f w ≡ f x → w ≡ x
inj {w = w} {x = x} p = sym (ret w) ∙∙ cong g p ∙∙ ret x
isEquiv→hasPropFibers : isEquiv f → hasPropFibers f
isEquiv→hasPropFibers e b = isContr→isProp (equiv-proof e b)
isEquiv→isEmbedding : isEquiv f → isEmbedding f
isEquiv→isEmbedding e = λ _ _ → congEquiv (_ , e) .snd
Equiv→Embedding : A ≃ B → A ↪ B
Equiv→Embedding (f , isEquivF) = (f , isEquiv→isEmbedding isEquivF)
id↪ : ∀ {ℓ} → (A : Type ℓ) → A ↪ A
id↪ A = Equiv→Embedding (idEquiv A)
iso→isEmbedding : ∀ {ℓ} {A B : Type ℓ}
→ (isom : Iso A B)
→ isEmbedding (Iso.fun isom)
iso→isEmbedding {A = A} {B} isom = (isEquiv→isEmbedding (equivIsEquiv (isoToEquiv isom)))
isEmbedding→Injection :
∀ {ℓ} {A B C : Type ℓ}
→ (a : A → B)
→ (e : isEmbedding a)
→ ∀ {f g : C → A} →
∀ x → (a (f x) ≡ a (g x)) ≡ (f x ≡ g x)
isEmbedding→Injection a e {f = f} {g} x = sym (ua (cong a , e (f x) (g x)))
Embedding-into-Discrete→Discrete : A ↪ B → Discrete B → Discrete A
Embedding-into-Discrete→Discrete (f , isEmbeddingF) _≟_ x y with f x ≟ f y
... | yes p = yes (invIsEq (isEmbeddingF x y) p)
... | no ¬p = no (¬p ∘ cong f)
Embedding-into-isProp→isProp : A ↪ B → isProp B → isProp A
Embedding-into-isProp→isProp (f , isEmbeddingF) isProp-B x y
= invIsEq (isEmbeddingF x y) (isProp-B (f x) (f y))
Embedding-into-isSet→isSet : A ↪ B → isSet B → isSet A
Embedding-into-isSet→isSet (f , isEmbeddingF) isSet-B x y p q =
p ≡⟨ sym (retIsEq isEquiv-cong-f p) ⟩
cong-f⁻¹ (cong f p) ≡⟨ cong cong-f⁻¹ cong-f-p≡cong-f-q ⟩
cong-f⁻¹ (cong f q) ≡⟨ retIsEq isEquiv-cong-f q ⟩
q ∎
where
cong-f-p≡cong-f-q = isSet-B (f x) (f y) (cong f p) (cong f q)
isEquiv-cong-f = isEmbeddingF x y
cong-f⁻¹ = invIsEq isEquiv-cong-f
Embedding-into-hLevel→hLevel
: ∀ n → A ↪ B → isOfHLevel (suc n) B → isOfHLevel (suc n) A
Embedding-into-hLevel→hLevel zero = Embedding-into-isProp→isProp
Embedding-into-hLevel→hLevel (suc n) (f , isEmbeddingF) Blvl x y
= isOfHLevelRespectEquiv (suc n) (invEquiv equiv) subLvl
where
equiv : (x ≡ y) ≃ (f x ≡ f y)
equiv .fst = cong f
equiv .snd = isEmbeddingF x y
subLvl : isOfHLevel (suc n) (f x ≡ f y)
subLvl = Blvl (f x) (f y)
Embedding→Subset : {X : Type ℓ} → Σ[ A ∈ Type ℓ ] (A ↪ X) → ℙ X
Embedding→Subset (_ , f , isEmbeddingF) x = fiber f x , isEmbedding→hasPropFibers isEmbeddingF x
Subset→Embedding : {X : Type ℓ} → ℙ X → Σ[ A ∈ Type ℓ ] (A ↪ X)
Subset→Embedding {X = X} A = D , fst , Ψ
where
D = Σ[ x ∈ X ] x ∈ A
Ψ : isEmbedding fst
Ψ w x = isEmbeddingFstΣProp (∈-isProp A)
Subset→Embedding→Subset : {X : Type ℓ} → section (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X})
Subset→Embedding→Subset _ = funExt λ x → Σ≡Prop (λ _ → isPropIsProp) (ua (FiberIso.fiberEquiv _ x))
Embedding→Subset→Embedding : {X : Type ℓ} → retract (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X})
Embedding→Subset→Embedding {ℓ = ℓ} {X = X} (A , f , ψ) =
cong (equivFun Σ-assoc-≃) (Σ≡Prop (λ _ → isPropIsEmbedding) (retEq (fibrationEquiv X ℓ) (A , f)))
Subset≃Embedding : {X : Type ℓ} → ℙ X ≃ (Σ[ A ∈ Type ℓ ] (A ↪ X))
Subset≃Embedding = isoToEquiv (iso Subset→Embedding Embedding→Subset
Embedding→Subset→Embedding Subset→Embedding→Subset)
Subset≡Embedding : {X : Type ℓ} → ℙ X ≡ (Σ[ A ∈ Type ℓ ] (A ↪ X))
Subset≡Embedding = ua Subset≃Embedding
isEmbedding-∘ : isEmbedding f → isEmbedding h → isEmbedding (f ∘ h)
isEmbedding-∘ {f = f} {h = h} Embf Embh w x
= compEquiv (cong h , Embh w x) (cong f , Embf (h w) (h x)) .snd
compEmbedding : (B ↪ C) → (A ↪ B) → (A ↪ C)
(compEmbedding (g , _ ) (f , _ )).fst = g ∘ f
(compEmbedding (_ , g↪) (_ , f↪)).snd = isEmbedding-∘ g↪ f↪
isEmbedding→embedsFibersIntoSingl
: isEmbedding f
→ ∀ z → fiber f z ↪ singl z
isEmbedding→embedsFibersIntoSingl {f = f} isE z = e , isEmbE where
e : fiber f z → singl z
e x = f (fst x) , sym (snd x)
isEmbE : isEmbedding e
isEmbE u v = goal where
Dom′ : ∀ u v → Type _
Dom′ u v = Σ[ p ∈ fst u ≡ fst v ] PathP (λ i → f (p i) ≡ z) (snd u) (snd v)
Cod′ : ∀ u v → Type _
Cod′ u v = Σ[ p ∈ f (fst u) ≡ f (fst v) ] PathP (λ i → p i ≡ z) (snd u) (snd v)
ΣeqCf : Dom′ u v ≃ Cod′ u v
ΣeqCf = Σ-cong-equiv-fst (_ , isE _ _)
dom→ : u ≡ v → Dom′ u v
dom→ p = cong fst p , cong snd p
dom← : Dom′ u v → u ≡ v
dom← p i = p .fst i , p .snd i
cod→ : e u ≡ e v → Cod′ u v
cod→ p = cong fst p , cong (sym ∘ snd) p
cod← : Cod′ u v → e u ≡ e v
cod← p i = p .fst i , sym (p .snd i)
goal : isEquiv (cong e)
goal .equiv-proof x .fst .fst =
dom← (equivCtr ΣeqCf (cod→ x) .fst)
goal .equiv-proof x .fst .snd j =
cod← (equivCtr ΣeqCf (cod→ x) .snd j)
goal .equiv-proof x .snd (g , p) i .fst =
dom← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .fst)
goal .equiv-proof x .snd (g , p) i .snd j =
cod← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .snd j)
isEmbedding→hasPropFibers′ : isEmbedding f → hasPropFibers f
isEmbedding→hasPropFibers′ {f = f} iE z =
Embedding-into-isProp→isProp (isEmbedding→embedsFibersIntoSingl iE z) isPropSingl
universeEmbedding :
∀ {ℓ ℓ' : Level}
→ (F : Type ℓ → Type ℓ')
→ (∀ X → F X ≃ X)
→ isEmbedding F
universeEmbedding F liftingEquiv = hasPropFibersOfImage→isEmbedding propFibersF where
lemma : ∀ A B → (F A ≡ F B) ≃ (B ≡ A)
lemma A B = (F A ≡ F B) ≃⟨ univalence ⟩
(F A ≃ F B) ≃⟨ equivComp (liftingEquiv A) (liftingEquiv B) ⟩
(A ≃ B) ≃⟨ invEquivEquiv ⟩
(B ≃ A) ≃⟨ invEquiv univalence ⟩
(B ≡ A) ■
fiberSingl : ∀ X → fiber F (F X) ≃ singl X
fiberSingl X = Σ-cong-equiv-snd (λ _ → lemma _ _)
propFibersF : hasPropFibersOfImage F
propFibersF X = Embedding-into-isProp→isProp (Equiv→Embedding (fiberSingl X)) isPropSingl
liftEmbedding : (ℓ ℓ' : Level)
→ isEmbedding (Lift {i = ℓ} {j = ℓ'})
liftEmbedding ℓ ℓ' = universeEmbedding (Lift {j = ℓ'}) (λ _ → invEquiv LiftEquiv)
module FibrationIdentityPrinciple {B : Type ℓ} {ℓ'} where
Fibration′ = Fibration B (ℓ-max ℓ ℓ')
module Lifted (f g : Fibration′) where
f≃g′ : Type (ℓ-max ℓ ℓ')
f≃g′ = ∀ b → fiber (f .snd) b ≃ fiber (g .snd) b
Fibration′IP : f≃g′ ≃ (f ≡ g)
Fibration′IP =
f≃g′
≃⟨ equivΠCod (λ _ → invEquiv univalence) ⟩
(∀ b → fiber (f .snd) b ≡ fiber (g .snd) b)
≃⟨ funExtEquiv ⟩
fiber (f .snd) ≡ fiber (g .snd)
≃⟨ invEquiv (congEquiv (fibrationEquiv B ℓ')) ⟩
f ≡ g
■
L : Type _ → Type _
L = Lift {i = ℓ'} {j = ℓ}
liftFibration : Fibration B ℓ' → Fibration′
liftFibration (A , f) = L A , f ∘ lower
hasPropFibersLiftFibration : hasPropFibers liftFibration
hasPropFibersLiftFibration (A , f) =
Embedding-into-isProp→isProp (Equiv→Embedding fiberChar)
(isPropΣ (isEmbedding→hasPropFibers (liftEmbedding _ _) A)
λ _ → isEquiv→hasPropFibers (snd (invEquiv (preCompEquiv LiftEquiv))) _)
where
fiberChar : fiber liftFibration (A , f)
≃ (Σ[ (E , eq) ∈ fiber L A ] fiber (_∘ lower) (transport⁻ (λ i → eq i → B) f))
fiberChar =
fiber liftFibration (A , f)
≃⟨ Σ-cong-equiv-snd (λ _ → invEquiv ΣPath≃PathΣ) ⟩
(Σ[ (E , g) ∈ Fibration B ℓ' ] Σ[ eq ∈ (L E ≡ A) ] PathP (λ i → eq i → B) (g ∘ lower) f)
≃⟨ boringSwap ⟩
(Σ[ (E , eq) ∈ fiber L A ] Σ[ g ∈ (E → B) ] PathP (λ i → eq i → B) (g ∘ lower) f)
≃⟨ Σ-cong-equiv-snd (λ _ → Σ-cong-equiv-snd λ _ → pathToEquiv (PathP≡Path⁻ _ _ _)) ⟩
(Σ[ (E , eq) ∈ fiber L A ] fiber (_∘ lower) (transport⁻ (λ i → eq i → B) f))
■ where
unquoteDecl boringSwap =
declStrictEquiv boringSwap
(λ ((E , g) , (eq , p)) → ((E , eq) , (g , p)))
(λ ((E , g) , (eq , p)) → ((E , eq) , (g , p)))
isEmbeddingLiftFibration : isEmbedding liftFibration
isEmbeddingLiftFibration = hasPropFibers→isEmbedding hasPropFibersLiftFibration
module _ (f g : Fibration B ℓ') where
open Lifted (liftFibration f) (liftFibration g)
f≃g : Type (ℓ-max ℓ ℓ')
f≃g = ∀ b → fiber (f .snd) b ≃ fiber (g .snd) b
FibrationIP : f≃g ≃ (f ≡ g)
FibrationIP =
f≃g ≃⟨ equivΠCod (λ b → equivComp (Σ-cong-equiv-fst LiftEquiv)
(Σ-cong-equiv-fst LiftEquiv)) ⟩
f≃g′ ≃⟨ Fibration′IP ⟩
(liftFibration f ≡ liftFibration g) ≃⟨ invEquiv (_ , isEmbeddingLiftFibration _ _) ⟩
(f ≡ g) ■
_≃Fib_ : {B : Type ℓ} (f g : Fibration B ℓ') → Type (ℓ-max ℓ ℓ')
_≃Fib_ = FibrationIdentityPrinciple.f≃g
FibrationIP : {B : Type ℓ} (f g : Fibration B ℓ') → f ≃Fib g ≃ (f ≡ g)
FibrationIP = FibrationIdentityPrinciple.FibrationIP
Embedding : (B : Type ℓ') → (ℓ : Level) → Type (ℓ-max ℓ' (ℓ-suc ℓ))
Embedding B ℓ = Σ[ A ∈ Type ℓ ] A ↪ B
module EmbeddingIdentityPrinciple {B : Type ℓ} {ℓ'} (f g : Embedding B ℓ') where
open Σ f renaming (fst to F)
open Σ g renaming (fst to G)
open Σ (f .snd) renaming (fst to ffun; snd to isEmbF)
open Σ (g .snd) renaming (fst to gfun; snd to isEmbG)
f≃g : Type _
f≃g = (∀ b → fiber ffun b → fiber gfun b) ×
(∀ b → fiber gfun b → fiber ffun b)
toFibr : Embedding B ℓ' → Fibration B ℓ'
toFibr (A , (f , _)) = (A , f)
isEmbeddingToFibr : isEmbedding toFibr
isEmbeddingToFibr w x = fullEquiv .snd where
fullEquiv : (w ≡ x) ≃ (toFibr w ≡ toFibr x)
fullEquiv = compEquiv (congEquiv (invEquiv Σ-assoc-≃)) (invEquiv (Σ≡PropEquiv (λ _ → isPropIsEmbedding)))
EmbeddingIP : f≃g ≃ (f ≡ g)
EmbeddingIP =
f≃g
≃⟨ strictIsoToEquiv (invIso toProdIso) ⟩
(∀ b → (fiber ffun b → fiber gfun b) × (fiber gfun b → fiber ffun b))
≃⟨ equivΠCod (λ _ → isEquivPropBiimpl→Equiv (isEmbedding→hasPropFibers isEmbF _)
(isEmbedding→hasPropFibers isEmbG _)) ⟩
(∀ b → (fiber (f .snd .fst) b) ≃ (fiber (g .snd .fst) b))
≃⟨ FibrationIP (toFibr f) (toFibr g) ⟩
(toFibr f ≡ toFibr g)
≃⟨ invEquiv (_ , isEmbeddingToFibr _ _) ⟩
f ≡ g
■
_≃Emb_ : {B : Type ℓ} (f g : Embedding B ℓ') → Type _
_≃Emb_ = EmbeddingIdentityPrinciple.f≃g
EmbeddingIP : {B : Type ℓ} (f g : Embedding B ℓ') → f ≃Emb g ≃ (f ≡ g)
EmbeddingIP = EmbeddingIdentityPrinciple.EmbeddingIP
Set-Embedding-into-Powerset : {A : Type ℓ} → isSet A → A ↪ ℙ A
Set-Embedding-into-Powerset {A = A} setA
= fun , (injEmbedding isSetℙ (λ y → sym (H₃ (H₂ y))))
where fun : A → ℙ A
fun a b = (a ≡ b) , (setA a b)
H₂ : {a b : A} → fun a ≡ fun b → a ∈ (fun b)
H₂ {a} fa≡fb = transport (cong (fst ∘ (_$ a)) fa≡fb) refl
H₃ : {a b : A} → b ∈ (fun a) → a ≡ b
H₃ b∈fa = b∈fa
×Monotone↪ : ∀ {ℓa ℓb ℓc ℓd}
{A : Type ℓa} {B : Type ℓb} {C : Type ℓc} {D : Type ℓd}
→ A ↪ C → B ↪ D → (A × B) ↪ (C × D)
×Monotone↪ {A = A} {B = B} {C = C} {D = D} (f , embf) (g , embg)
= (map-× f g) , emb
where apmap : ∀ x y → x ≡ y → map-× f g x ≡ map-× f g y
apmap x y x≡y = ΣPathP (cong (f ∘ fst) x≡y , cong (g ∘ snd) x≡y)
equiv : ∀ x y → isEquiv (apmap x y)
equiv x y = ((invEquiv ΣPathP≃PathPΣ)
∙ₑ (≃-× ((cong f) , (embf (fst x) (fst y)))
((cong g) , (embg (snd x) (snd y))))
∙ₑ ΣPathP≃PathPΣ) .snd
emb : isEmbedding (map-× f g)
emb x y = equiv x y
EmbeddingΣProp : {A : Type ℓ} → {B : A → Type ℓ'} → (∀ a → isProp (B a)) → Σ A B ↪ A
EmbeddingΣProp f = fst , (λ _ _ → isEmbeddingFstΣProp f)