{-# OPTIONS --safe #-}
module Cubical.Functions.Embedding where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence using (ua; univalence; pathToEquiv)
open import Cubical.Functions.Fibration

open import Cubical.Data.Sigma
open import Cubical.Functions.Fibration
open import Cubical.Functions.FunExtEquiv
open import Cubical.Relation.Nullary using (Discrete; yes; no)
open import Cubical.Structures.Axioms

open import Cubical.Reflection.StrictEquiv

open import Cubical.Data.Nat using (; zero; suc)
open import Cubical.Data.Sigma

private
  variable
     ℓ' ℓ'' : Level
    A B C : Type 
    f h : A  B
    w x : A
    y z : B

-- Embeddings are generalizations of injections. The usual
-- definition of injection as:
--
--    f x ≡ f y → x ≡ y
--
-- is not well-behaved with higher h-levels, while embeddings
-- are.
isEmbedding : (A  B)  Type _
isEmbedding f =  w x  isEquiv {A = w  x} (cong f)

isPropIsEmbedding : isProp (isEmbedding f)
isPropIsEmbedding {f = f} = isPropΠ2 λ _ _  isPropIsEquiv (cong f)

-- Embedding is injection in the aforementioned sense:
isEmbedding→Inj
  : {f : A  B}
   isEmbedding f
    w x  f w  f x  w  x
isEmbedding→Inj {f = f} embb w x p
  = equiv-proof (embb w x) p .fst .fst

-- The converse implication holds if B is an h-set, see injEmbedding below.


-- If `f` is an embedding, we'd expect the fibers of `f` to be
-- propositions, like an injective function.
hasPropFibers : (A  B)  Type _
hasPropFibers f =  y  isProp (fiber f y)

-- This can be relaxed to having all prop fibers over the image, see [hasPropFibersOfImage→isEmbedding]
hasPropFibersOfImage : (A  B)  Type _
hasPropFibersOfImage f =  x  isProp (fiber f (f x))

-- some notation
_↪_ : Type ℓ'  Type ℓ''  Type (ℓ-max ℓ' ℓ'')
A  B = Σ[ f  (A  B) ] isEmbedding f

hasPropFibersIsProp : isProp (hasPropFibers f)
hasPropFibersIsProp = isPropΠ  _  isPropIsProp)

private
  lemma₀ : (p : y  z)  fiber f y  fiber f z
  lemma₀ {f = f} p = λ i  fiber f (p i)

  lemma₁ : isEmbedding f   x  isContr (fiber f (f x))
  lemma₁ {f = f} iE x = value , path
    where
    value : fiber f (f x)
    value = (x , refl)

    path : ∀(fi : fiber f (f x))  value  fi
    path (w , p) i
      = case equiv-proof (iE w x) p of λ
      { ((q , sq) , _)
       hfill  j  λ { (i = i0)  (x , refl)
                      ; (i = i1)  (w , sq j)
                      })
          (inS (q (~ i) , λ j  f (q (~ i  j))))
          i1
      }

isEmbedding→hasPropFibers : isEmbedding f  hasPropFibers f
isEmbedding→hasPropFibers iE y (x , p)
  = subst  f  isProp f) (lemma₀ p) (isContr→isProp (lemma₁ iE x)) (x , p)

private
  fibCong→PathP
    : {f : A  B}
     (p : f w  f x)
     (fi : fiber (cong f) p)
     PathP  i  fiber f (p i)) (w , refl) (x , refl)
  fibCong→PathP p (q , r) i = q i , λ j  r j i

  PathP→fibCong
    : {f : A  B}
     (p : f w  f x)
     (pp : PathP  i  fiber f (p i)) (w , refl) (x , refl))
     fiber (cong f) p
  PathP→fibCong p pp =  i  fst (pp i)) ,  j i  snd (pp i) j)

PathP≡fibCong
  : {f : A  B}
   (p : f w  f x)
   PathP  i  fiber f (p i)) (w , refl) (x , refl)  fiber (cong f) p
PathP≡fibCong p
  = isoToPath (iso (PathP→fibCong p) (fibCong→PathP p)  _  refl)  _  refl))

hasPropFibers→isEmbedding : hasPropFibers f  isEmbedding f
hasPropFibers→isEmbedding {f = f} iP w x .equiv-proof p
  = subst isContr (PathP≡fibCong p) (isProp→isContrPathP  i  iP (p i)) fw fx)
  where
  fw : fiber f (f w)
  fw = (w , refl)

  fx : fiber f (f x)
  fx = (x , refl)

hasPropFibersOfImage→hasPropFibers : hasPropFibersOfImage f  hasPropFibers f
hasPropFibersOfImage→hasPropFibers {f = f} fibImg y a b =
  subst  y  isProp (fiber f y)) (snd a) (fibImg (fst a)) a b

hasPropFibersOfImage→isEmbedding : hasPropFibersOfImage f  isEmbedding f
hasPropFibersOfImage→isEmbedding = hasPropFibers→isEmbedding  hasPropFibersOfImage→hasPropFibers

isEmbedding≡hasPropFibers : isEmbedding f  hasPropFibers f
isEmbedding≡hasPropFibers
  = isoToPath
      (iso isEmbedding→hasPropFibers
           hasPropFibers→isEmbedding
            _  hasPropFibersIsProp _ _)
            _  isPropIsEmbedding _ _))

-- We use the characterization as hasPropFibers to show that naive injectivity
-- implies isEmbedding as long as B is an h-set.
module _
  {f : A  B}
  (isSetB : isSet B)
  where

  module _
    (inj : ∀{w x}  f w  f x  w  x)
    where

    injective→hasPropFibers : hasPropFibers f
    injective→hasPropFibers y (x , fx≡y) (x' , fx'≡y) =
      Σ≡Prop
         _  isSetB _ _)
        (inj (fx≡y  sym (fx'≡y)))

    injEmbedding : isEmbedding f
    injEmbedding = hasPropFibers→isEmbedding injective→hasPropFibers

  retractableIntoSet→isEmbedding : hasRetract f  isEmbedding f
  retractableIntoSet→isEmbedding (g , ret) = injEmbedding inj
    where
    inj : f w  f x  w  x
    inj {w = w} {x = x} p = sym (ret w) ∙∙ cong g p ∙∙ ret x

isEquiv→hasPropFibers : isEquiv f  hasPropFibers f
isEquiv→hasPropFibers e b = isContr→isProp (equiv-proof e b)

isEquiv→isEmbedding : isEquiv f  isEmbedding f
isEquiv→isEmbedding e = λ _ _  congEquiv (_ , e) .snd

Equiv→Embedding : A  B  A  B
Equiv→Embedding (f , isEquivF) = (f , isEquiv→isEmbedding isEquivF)

id↪ :  {}  (A : Type )  A  A
id↪ A = Equiv→Embedding (idEquiv A)

iso→isEmbedding :  {} {A B : Type }
   (isom : Iso A B)
  -------------------------------
   isEmbedding (Iso.fun isom)
iso→isEmbedding {A = A} {B} isom = (isEquiv→isEmbedding (equivIsEquiv (isoToEquiv isom)))

isEmbedding→Injection :
   {} {A B C : Type }
   (a : A  B)
   (e : isEmbedding a)
  ----------------------
    {f g : C  A} 
   x  (a (f x)  a (g x))  (f x  g x)
isEmbedding→Injection a e {f = f} {g} x = sym (ua (cong a , e (f x) (g x)))

Embedding-into-Discrete→Discrete : A  B  Discrete B  Discrete A
Embedding-into-Discrete→Discrete (f , isEmbeddingF) _≟_ x y with f x  f y
... | yes p = yes (invIsEq (isEmbeddingF x y) p)
... | no ¬p = no (¬p  cong f)

Embedding-into-isProp→isProp : A  B  isProp B  isProp A
Embedding-into-isProp→isProp (f , isEmbeddingF) isProp-B x y
  = invIsEq (isEmbeddingF x y) (isProp-B (f x) (f y))

Embedding-into-isSet→isSet : A  B  isSet B  isSet A
Embedding-into-isSet→isSet (f , isEmbeddingF) isSet-B x y p q =
  p ≡⟨ sym (retIsEq isEquiv-cong-f p) 
  cong-f⁻¹ (cong f p) ≡⟨ cong cong-f⁻¹ cong-f-p≡cong-f-q 
  cong-f⁻¹ (cong f q) ≡⟨ retIsEq isEquiv-cong-f q 
  q 
  where
    cong-f-p≡cong-f-q = isSet-B (f x) (f y) (cong f p) (cong f q)
    isEquiv-cong-f = isEmbeddingF x y
    cong-f⁻¹ = invIsEq isEquiv-cong-f

Embedding-into-hLevel→hLevel
  :  n  A  B  isOfHLevel (suc n) B  isOfHLevel (suc n) A
Embedding-into-hLevel→hLevel zero = Embedding-into-isProp→isProp
Embedding-into-hLevel→hLevel (suc n) (f , isEmbeddingF) Blvl x y
  = isOfHLevelRespectEquiv (suc n) (invEquiv equiv) subLvl
  where
  equiv : (x  y)  (f x  f y)
  equiv .fst = cong f
  equiv .snd = isEmbeddingF x y
  subLvl : isOfHLevel (suc n) (f x  f y)
  subLvl = Blvl (f x) (f y)

-- We now show that the powerset is the subtype classifier
-- i.e. ℙ X ≃ Σ[A ∈ Type ℓ] (A ↪ X)
Embedding→Subset : {X : Type }  Σ[ A  Type  ] (A  X)   X
Embedding→Subset (_ , f , isEmbeddingF) x = fiber f x , isEmbedding→hasPropFibers isEmbeddingF x

Subset→Embedding : {X : Type }   X  Σ[ A  Type  ] (A  X)
Subset→Embedding {X = X} A = D , fst , Ψ
 where
  D = Σ[ x  X ] x  A

  Ψ : isEmbedding fst
  Ψ w x = isEmbeddingFstΣProp (∈-isProp A)

Subset→Embedding→Subset : {X : Type }  section (Embedding→Subset {} {X}) (Subset→Embedding {} {X})
Subset→Embedding→Subset _ = funExt λ x  Σ≡Prop  _  isPropIsProp) (ua (FiberIso.fiberEquiv _ x))

Embedding→Subset→Embedding : {X : Type }  retract (Embedding→Subset {} {X}) (Subset→Embedding {} {X})
Embedding→Subset→Embedding { = } {X = X} (A , f , ψ) =
  cong (equivFun Σ-assoc-≃) (Σ≡Prop  _  isPropIsEmbedding) (retEq (fibrationEquiv X ) (A , f)))

Subset≃Embedding : {X : Type }   X  (Σ[ A  Type  ] (A  X))
Subset≃Embedding = isoToEquiv (iso Subset→Embedding Embedding→Subset
                                    Embedding→Subset→Embedding Subset→Embedding→Subset)

Subset≡Embedding : {X : Type }   X  (Σ[ A  Type  ] (A  X))
Subset≡Embedding = ua Subset≃Embedding

isEmbedding-∘ : isEmbedding f  isEmbedding h  isEmbedding (f  h)
isEmbedding-∘ {f = f} {h = h} Embf Embh w x
  = compEquiv (cong h , Embh w x) (cong f , Embf (h w) (h x)) .snd

compEmbedding : (B  C)  (A  B)  (A  C)
(compEmbedding (g , _ ) (f , _ )).fst = g  f
(compEmbedding (_ , g↪) (_ , f↪)).snd = isEmbedding-∘ g↪ f↪

isEmbedding→embedsFibersIntoSingl
  : isEmbedding f
    z  fiber f z  singl z
isEmbedding→embedsFibersIntoSingl {f = f} isE z = e , isEmbE where
  e : fiber f z  singl z
  e x = f (fst x) , sym (snd x)

  isEmbE : isEmbedding e
  isEmbE u v = goal where
    -- "adjust" ΣeqCf by trivial equivalences that hold judgementally, which should save compositions
    Dom′ :  u v  Type _
    Dom′ u v = Σ[ p     fst u      fst v  ] PathP  i  f (p i)  z) (snd u) (snd v)
    Cod′ :  u v  Type _
    Cod′ u v = Σ[ p  f (fst u)  f (fst v) ] PathP  i     p i   z) (snd u) (snd v)
    ΣeqCf : Dom′ u v  Cod′ u v
    ΣeqCf = Σ-cong-equiv-fst (_ , isE _ _)

    dom→ : u  v  Dom′ u v
    dom→ p = cong fst p , cong snd p
    dom← : Dom′ u v  u  v
    dom← p i = p .fst i , p .snd i

    cod→ : e u  e v  Cod′ u v
    cod→ p = cong fst p , cong (sym  snd) p
    cod← : Cod′ u v  e u  e v
    cod← p i = p .fst i , sym (p .snd i)

    goal : isEquiv (cong e)
    goal .equiv-proof x .fst .fst =
      dom← (equivCtr ΣeqCf (cod→ x) .fst)
    goal .equiv-proof x .fst .snd j =
      cod← (equivCtr ΣeqCf (cod→ x) .snd j)
    goal .equiv-proof x .snd (g , p) i .fst =
      dom← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .fst)
    goal .equiv-proof x .snd (g , p) i .snd j =
      cod← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .snd j)

isEmbedding→hasPropFibers′ : isEmbedding f  hasPropFibers f
isEmbedding→hasPropFibers′ {f = f} iE z =
  Embedding-into-isProp→isProp (isEmbedding→embedsFibersIntoSingl iE z) isPropSingl

universeEmbedding :
   { ℓ' : Level}
   (F : Type   Type ℓ')
   (∀ X  F X  X)
   isEmbedding F
universeEmbedding F liftingEquiv = hasPropFibersOfImage→isEmbedding propFibersF where
  lemma :  A B  (F A  F B)  (B  A)
  lemma A B = (F A  F B)  ≃⟨ univalence 
              (F A  F B) ≃⟨ equivComp (liftingEquiv A) (liftingEquiv B) 
              (A  B)     ≃⟨ invEquivEquiv 
              (B  A)     ≃⟨ invEquiv univalence 
              (B  A)      
  fiberSingl :  X  fiber F (F X)  singl X
  fiberSingl X = Σ-cong-equiv-snd  _  lemma _ _)
  propFibersF : hasPropFibersOfImage F
  propFibersF X = Embedding-into-isProp→isProp (Equiv→Embedding (fiberSingl X)) isPropSingl

liftEmbedding : ( ℓ' : Level)
               isEmbedding (Lift {i = } {j = ℓ'})
liftEmbedding  ℓ' = universeEmbedding (Lift {j = ℓ'})  _  invEquiv LiftEquiv)

module FibrationIdentityPrinciple {B : Type } {ℓ'} where
  -- note that fibrationEquiv (for good reason) uses ℓ' = ℓ-max ℓ ℓ', so we have to work
  -- some universe magic to achieve good universe polymorphism

  -- First, prove it for the case that's dealt with in fibrationEquiv
  Fibration′ = Fibration B (ℓ-max  ℓ')

  module Lifted (f g : Fibration′) where
    f≃g′ : Type (ℓ-max  ℓ')
    f≃g′ =  b  fiber (f .snd) b  fiber (g .snd) b

    Fibration′IP : f≃g′  (f  g)
    Fibration′IP =
        f≃g′
      ≃⟨ equivΠCod  _  invEquiv univalence) 
        (∀ b  fiber (f .snd) b  fiber (g .snd) b)
      ≃⟨ funExtEquiv 
        fiber (f .snd)  fiber (g .snd)
      ≃⟨ invEquiv (congEquiv (fibrationEquiv B ℓ')) 
        f  g
      

  -- Then embed into the above case by lifting the type
  L : Type _  Type _ -- local synonym fixing the levels of Lift
  L = Lift {i = ℓ'} {j = }

  liftFibration : Fibration B ℓ'  Fibration′
  liftFibration (A , f) = L A , f  lower

  hasPropFibersLiftFibration : hasPropFibers liftFibration
  hasPropFibersLiftFibration (A , f) =
    Embedding-into-isProp→isProp (Equiv→Embedding fiberChar)
      (isPropΣ (isEmbedding→hasPropFibers (liftEmbedding _ _) A)
               λ _  isEquiv→hasPropFibers (snd (invEquiv (preCompEquiv LiftEquiv))) _)
    where
    fiberChar : fiber liftFibration (A , f)
               (Σ[ (E , eq)  fiber L A ] fiber (_∘ lower) (transport⁻  i  eq i  B) f))
    fiberChar =
        fiber liftFibration (A , f)
      ≃⟨ Σ-cong-equiv-snd  _  invEquiv ΣPath≃PathΣ) 
        (Σ[ (E , g)  Fibration B ℓ' ] Σ[ eq  (L E  A) ] PathP  i  eq i  B) (g  lower) f)
      ≃⟨ boringSwap 
        (Σ[ (E , eq)  fiber L A ] Σ[ g  (E  B) ] PathP  i  eq i  B) (g  lower) f)
      ≃⟨ Σ-cong-equiv-snd  _  Σ-cong-equiv-snd λ _  pathToEquiv (PathP≡Path⁻ _ _ _)) 
        (Σ[ (E , eq)  fiber L A ] fiber (_∘ lower) (transport⁻  i  eq i  B) f))
       where
      unquoteDecl boringSwap =
        declStrictEquiv boringSwap
           ((E , g) , (eq , p))  ((E , eq) , (g , p)))
           ((E , g) , (eq , p))  ((E , eq) , (g , p)))

  isEmbeddingLiftFibration : isEmbedding liftFibration
  isEmbeddingLiftFibration = hasPropFibers→isEmbedding hasPropFibersLiftFibration

  -- and finish off
  module _ (f g : Fibration B ℓ') where
    open Lifted (liftFibration f) (liftFibration g)
    f≃g : Type (ℓ-max  ℓ')
    f≃g =  b  fiber (f .snd) b  fiber (g .snd) b

    FibrationIP : f≃g  (f  g)
    FibrationIP =
      f≃g  ≃⟨ equivΠCod  b  equivComp (Σ-cong-equiv-fst LiftEquiv)
                                          (Σ-cong-equiv-fst LiftEquiv)) 
      f≃g′ ≃⟨ Fibration′IP 
      (liftFibration f  liftFibration g) ≃⟨ invEquiv (_ , isEmbeddingLiftFibration _ _) 
      (f  g) 

_≃Fib_ : {B : Type } (f g : Fibration B ℓ')  Type (ℓ-max  ℓ')
_≃Fib_ = FibrationIdentityPrinciple.f≃g

FibrationIP : {B : Type } (f g : Fibration B ℓ')  f ≃Fib g  (f  g)
FibrationIP = FibrationIdentityPrinciple.FibrationIP

Embedding : (B : Type ℓ')  ( : Level)  Type (ℓ-max ℓ' (ℓ-suc ))
Embedding B  = Σ[ A  Type  ] A  B

module EmbeddingIdentityPrinciple {B : Type } {ℓ'} (f g : Embedding B ℓ') where
  open Σ f renaming (fst to F)
  open Σ g renaming (fst to G)
  open Σ (f .snd) renaming (fst to ffun; snd to isEmbF)
  open Σ (g .snd) renaming (fst to gfun; snd to isEmbG)
  f≃g : Type _
  f≃g = (∀ b  fiber ffun b  fiber gfun b) ×
         (∀ b  fiber gfun b  fiber ffun b)
  toFibr : Embedding B ℓ'  Fibration B ℓ'
  toFibr (A , (f , _)) = (A , f)

  isEmbeddingToFibr : isEmbedding toFibr
  isEmbeddingToFibr w x = fullEquiv .snd where
    -- carefully managed such that (cong toFibr) is the equivalence
    fullEquiv : (w  x)  (toFibr w  toFibr x)
    fullEquiv = compEquiv (congEquiv (invEquiv Σ-assoc-≃)) (invEquiv (Σ≡PropEquiv  _  isPropIsEmbedding)))

  EmbeddingIP : f≃g  (f  g)
  EmbeddingIP =
      f≃g
    ≃⟨ strictIsoToEquiv (invIso toProdIso) 
      (∀ b  (fiber ffun b  fiber gfun b) × (fiber gfun b  fiber ffun b))
    ≃⟨ equivΠCod  _  isEquivPropBiimpl→Equiv (isEmbedding→hasPropFibers isEmbF _)
                                                 (isEmbedding→hasPropFibers isEmbG _)) 
      (∀ b  (fiber (f .snd .fst) b)  (fiber (g .snd .fst) b))
    ≃⟨ FibrationIP (toFibr f) (toFibr g) 
      (toFibr f  toFibr g)
    ≃⟨ invEquiv (_ , isEmbeddingToFibr _ _) 
      f  g
    

_≃Emb_ : {B : Type } (f g : Embedding B ℓ')  Type _
_≃Emb_ = EmbeddingIdentityPrinciple.f≃g

EmbeddingIP : {B : Type } (f g : Embedding B ℓ')  f ≃Emb g  (f  g)
EmbeddingIP = EmbeddingIdentityPrinciple.EmbeddingIP

-- Cantor's theorem for sets
Set-Embedding-into-Powerset : {A : Type }  isSet A  A   A
Set-Embedding-into-Powerset {A = A} setA
  = fun , (injEmbedding isSetℙ  y  sym (H₃ (H₂ y))))
  where fun : A   A
        fun a b = (a  b) , (setA a b)

        H₂ : {a b : A}  fun a  fun b  a  (fun b)
        H₂ {a} fa≡fb = transport (cong (fst  (_$ a)) fa≡fb) refl

        H₃ : {a b : A}  b  (fun a)  a  b
        H₃ b∈fa = b∈fa

×Monotone↪ :  {ℓa ℓb ℓc ℓd}
                {A : Type ℓa} {B : Type ℓb} {C : Type ℓc} {D : Type ℓd}
             A  C  B  D  (A × B)  (C × D)
×Monotone↪ {A = A} {B = B} {C = C} {D = D} (f , embf) (g , embg)
  = (map-× f g) , emb
    where apmap :  x y  x  y  map-× f g x  map-× f g y
          apmap x y x≡y = ΣPathP (cong (f  fst) x≡y , cong (g  snd) x≡y)

          equiv :  x y  isEquiv (apmap x y)
          equiv x y = ((invEquiv ΣPathP≃PathPΣ)
                    ∙ₑ (≃-× ((cong f) , (embf (fst x) (fst y)))
                             ((cong g) , (embg (snd x) (snd y))))
                    ∙ₑ ΣPathP≃PathPΣ) .snd

          emb : isEmbedding (map-× f g)
          emb x y = equiv x y

EmbeddingΣProp : {A : Type }  {B : A  Type ℓ'}  (∀ a  isProp (B a))  Σ A B  A
EmbeddingΣProp f = fst ,  _ _  isEmbeddingFstΣProp f)