{-# OPTIONS --safe #-}
module Cubical.Foundations.Pointed.Homogeneous where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Path
open import Cubical.Data.Sigma
open import Cubical.Data.Empty as ⊥
open import Cubical.Relation.Nullary
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Pointed.Base
open import Cubical.Foundations.Pointed.Properties
open import Cubical.Structures.Pointed
isHomogeneous : ∀ {ℓ} → Pointed ℓ → Type (ℓ-suc ℓ)
isHomogeneous {ℓ} (A , x) = ∀ y → Path (Pointed ℓ) (A , x) (A , y)
→∙Homogeneous≡ : ∀ {ℓ ℓ'} {A∙ : Pointed ℓ} {B∙ : Pointed ℓ'} {f∙ g∙ : A∙ →∙ B∙}
  (h : isHomogeneous B∙) → f∙ .fst ≡ g∙ .fst → f∙ ≡ g∙
→∙Homogeneous≡ {A∙ = A∙@(_ , a₀)} {B∙@(B , _)} {f∙@(_ , f₀)} {g∙@(_ , g₀)} h p =
  subst (λ Q∙ → PathP (λ i → A∙ →∙ Q∙ i) f∙ g∙) (sym (flipSquare fix)) badPath
  where
  badPath : PathP (λ i → A∙ →∙ (B , (sym f₀ ∙∙ funExt⁻ p a₀ ∙∙ g₀) i)) f∙ g∙
  badPath i .fst = p i
  badPath i .snd j = doubleCompPath-filler (sym f₀) (funExt⁻ p a₀) g₀ j i
  fix : PathP (λ i → B∙ ≡ (B , (sym f₀ ∙∙ funExt⁻ p a₀ ∙∙ g₀) i)) refl refl
  fix i =
    hcomp
      (λ j → λ
        { (i = i0) → lCancel (h (pt B∙)) j
        ; (i = i1) → lCancel (h (pt B∙)) j
        })
      (sym (h (pt B∙)) ∙ h ((sym f₀ ∙∙ funExt⁻ p a₀ ∙∙ g₀) i))
→∙Homogeneous≡Path : ∀ {ℓ ℓ'} {A∙ : Pointed ℓ} {B∙ : Pointed ℓ'} {f∙ g∙ : A∙ →∙ B∙}
  (h : isHomogeneous B∙) → (p q : f∙ ≡ g∙) → cong fst p ≡ cong fst q → p ≡ q
→∙Homogeneous≡Path {A∙ = A∙@(A , a₀)} {B∙@(B , b)} {f∙@(f , f₀)} {g∙@(g , g₀)} h p q r =
  transport (λ k
      → PathP (λ i
        → PathP (λ j → (A , a₀) →∙ newPath-refl p q r i j (~ k))
                 (f , f₀) (g , g₀)) p q)
      (badPath p q r)
  where
  newPath : (p q : f∙ ≡ g∙) (r : cong fst p ≡ cong fst q)
    → Square (refl {x = b}) refl refl refl
  newPath p q r i j =
    hcomp (λ k → λ {(i = i0) → cong snd p j k
                   ; (i = i1) → cong snd q j k
                   ; (j = i0) → f₀ k
                   ; (j = i1) → g₀ k})
          (r i j a₀)
  newPath-refl : (p q : f∙ ≡ g∙) (r : cong fst p ≡ cong fst q)
         → PathP (λ i → (PathP (λ j → B∙ ≡ (B , newPath p q r i j))) refl refl) refl refl
  newPath-refl p q r i j k =
    hcomp (λ w → λ { (i = i0) → lCancel (h b) w k
                    ; (i = i1) → lCancel (h b) w k
                    ; (j = i0) → lCancel (h b) w k
                    ; (j = i1) → lCancel (h b) w k
                    ; (k = i0) → lCancel (h b) w k
                    ; (k = i1) → B , newPath p q r i j})
          ((sym (h b) ∙ h (newPath p q r i j)) k)
  badPath : (p q : f∙ ≡ g∙) (r : cong fst p ≡ cong fst q)
    → PathP (λ i →
        PathP (λ j → A∙ →∙ (B , newPath p q r i j))
             (f , f₀) (g , g₀))
              p q
  fst (badPath p q r i j) = r i j
  snd (badPath p q s i j) k =
    hcomp (λ r → λ { (i = i0) → snd (p j) (r ∧ k)
                    ; (i = i1) → snd (q j) (r ∧ k)
                    ; (j = i0) → f₀ (k ∧ r)
                    ; (j = i1) → g₀ (k ∧ r)
                    ; (k = i0) → s i j a₀})
          (s i j a₀)
→∙HomogeneousSquare : ∀ {ℓ ℓ'} {A∙ : Pointed ℓ} {B∙ : Pointed ℓ'} {f∙ g∙ h∙ l∙ : A∙ →∙ B∙}
  (h : isHomogeneous B∙) → (s : f∙ ≡ h∙) (t : g∙ ≡ l∙) (p : f∙ ≡ g∙) (q : h∙ ≡ l∙)
    → Square (cong fst p) (cong fst q) (cong fst s) (cong fst t)
    → Square p q s t
→∙HomogeneousSquare {f∙ = f∙} {g∙ = g∙} {h∙ = h∙} {l∙ = l∙} h =
  J (λ h∙ s → (t : g∙ ≡ l∙) (p : f∙ ≡ g∙) (q : h∙ ≡ l∙) →
      Square (cong fst p) (cong fst q) (cong fst s) (cong fst t) →
      Square p q s t)
   (J (λ l∙ t → (p : f∙ ≡ g∙) (q : f∙ ≡ l∙)
      → Square (cong fst p) (cong fst q) refl (cong fst t)
      → Square p q refl t)
      (→∙Homogeneous≡Path {f∙ = f∙} {g∙ = g∙} h))
isHomogeneousPi : ∀ {ℓ ℓ'} {A : Type ℓ} {B∙ : A → Pointed ℓ'}
                 → (∀ a → isHomogeneous (B∙ a)) → isHomogeneous (Πᵘ∙ A B∙)
isHomogeneousPi h f i .fst = ∀ a → typ (h a (f a) i)
isHomogeneousPi h f i .snd a = pt (h a (f a) i)
isHomogeneousΠ∙ : ∀ {ℓ ℓ'} (A : Pointed ℓ) (B : typ A → Type ℓ')
                  → (b₀ : B (pt A))
                  → ((a : typ A) (x : B a) → isHomogeneous (B a , x))
                  → (f : Π∙ A B b₀)
                  → isHomogeneous (Π∙ A B b₀ , f)
fst (isHomogeneousΠ∙ A B b₀ h f g i) =
  Σ[ r ∈ ((a : typ A) → fst ((h a (fst f a) (fst g a)) i)) ]
    r (pt A) ≡ hcomp (λ k → λ {(i = i0) → snd f k
                              ; (i = i1) → snd g k})
                     (snd (h (pt A) (fst f (pt A)) (fst g (pt A)) i))
snd (isHomogeneousΠ∙ A B b₀ h f g i) =
    (λ a → snd (h a (fst f a) (fst g a) i))
  , λ j → hcomp (λ k → λ { (i = i0) → snd f (k ∧ j)
                          ; (i = i1) → snd g (k ∧ j)
                          ; (j = i0) → snd (h (pt A) (fst f (pt A))
                                                      (fst g (pt A)) i)})
                 (snd (h (pt A) (fst f (pt A)) (fst g (pt A)) i))
isHomogeneous→∙ : ∀ {ℓ ℓ'} {A∙ : Pointed ℓ} {B∙ : Pointed ℓ'}
  → isHomogeneous B∙ → isHomogeneous (A∙ →∙ B∙ ∙)
isHomogeneous→∙ {A∙ = A∙} {B∙} h f∙ =
  ΣPathP
    ( (λ i → Π∙ A∙ (λ a → T a i) (t₀ i))
    , PathPIsoPath _ _ _ .Iso.inv
        (→∙Homogeneous≡ h
          (PathPIsoPath (λ i → (a : typ A∙) → T a i) (λ _ → pt B∙) _ .Iso.fun
            (λ i a → pt (h (f∙ .fst a) i))))
    )
  where
  T : ∀ a → typ B∙ ≡ typ B∙
  T a i = typ (h (f∙ .fst a) i)
  t₀ : PathP (λ i → T (pt A∙) i) (pt B∙) (pt B∙)
  t₀ = cong pt (h (f∙ .fst (pt A∙))) ▷ f∙ .snd
isHomogeneousProd : ∀ {ℓ ℓ'} {A∙ : Pointed ℓ} {B∙ : Pointed ℓ'}
                   → isHomogeneous A∙ → isHomogeneous B∙ → isHomogeneous (A∙ ×∙ B∙)
isHomogeneousProd hA hB (a , b) i .fst = typ (hA a i) × typ (hB b i)
isHomogeneousProd hA hB (a , b) i .snd .fst = pt (hA a i)
isHomogeneousProd hA hB (a , b) i .snd .snd = pt (hB b i)
isHomogeneousPath : ∀ {ℓ} (A : Type ℓ) {x y : A} (p : x ≡ y) → isHomogeneous ((x ≡ y) , p)
isHomogeneousPath A {x} {y} p q
  = pointed-sip ((x ≡ y) , p) ((x ≡ y) , q) (eqv , compPathr-cancel p q)
  where eqv : (x ≡ y) ≃ (x ≡ y)
        eqv = compPathlEquiv (q ∙ sym p)
module HomogeneousDiscrete {ℓ} {A∙ : Pointed ℓ} (dA : Discrete (typ A∙)) (y : typ A∙) where
  
  switch : typ A∙ → typ A∙
  switch x with dA x (pt A∙)
  ...         | yes _ = y
  ...         | no _ with dA x y
  ...                | yes _  = pt A∙
  ...                | no  _  = x
  switch-ptA∙ : switch (pt A∙) ≡ y
  switch-ptA∙ with dA (pt A∙) (pt A∙)
  ...         | yes _ = refl
  ...         | no ¬p = ⊥.rec (¬p refl)
  switch-idp : ∀ x → switch (switch x) ≡ x
  switch-idp x with dA x (pt A∙)
  switch-idp x | yes p with dA y (pt A∙)
  switch-idp x | yes p | yes q = q ∙ sym p
  switch-idp x | yes p | no  _ with dA y y
  switch-idp x | yes p | no  _ | yes _ = sym p
  switch-idp x | yes p | no  _ | no ¬p = ⊥.rec (¬p refl)
  switch-idp x | no ¬p with dA x y
  switch-idp x | no ¬p | yes p with dA y (pt A∙)
  switch-idp x | no ¬p | yes p | yes q = ⊥.rec (¬p (p ∙ q))
  switch-idp x | no ¬p | yes p | no  _ with dA (pt A∙) (pt A∙)
  switch-idp x | no ¬p | yes p | no  _ | yes _ = sym p
  switch-idp x | no ¬p | yes p | no  _ | no ¬q = ⊥.rec (¬q refl)
  switch-idp x | no ¬p | no ¬q with dA x (pt A∙)
  switch-idp x | no ¬p | no ¬q | yes p = ⊥.rec (¬p p)
  switch-idp x | no ¬p | no ¬q | no  _ with dA x y
  switch-idp x | no ¬p | no ¬q | no  _ | yes q = ⊥.rec (¬q q)
  switch-idp x | no ¬p | no ¬q | no  _ | no  _ = refl
  switch-eqv : typ A∙ ≃ typ A∙
  switch-eqv = isoToEquiv (iso switch switch switch-idp switch-idp)
isHomogeneousDiscrete : ∀ {ℓ} {A∙ : Pointed ℓ} (dA : Discrete (typ A∙)) → isHomogeneous A∙
isHomogeneousDiscrete {ℓ} {A∙} dA y
  = pointed-sip (typ A∙ , pt A∙) (typ A∙ , y) (switch-eqv , switch-ptA∙)
  where open HomogeneousDiscrete {ℓ} {A∙} dA y