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Abstract

The following is a collection of results on topological properties of synthetic schemes. Authors
so far: Ingo Blechschmidt, Felix Cherubini, Hugo Moeneclaey, Matthias Hutzler, Marc Nieper-
Wißkirchen, David Wärn.
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Introduction

1 Topology of schemes

This collection of topological properties is not meant to be complete. Reduced schemes are defined in
the work in progress draft [Che+23a].

1.1 Infinitesimal Neighborhoods

There is an operation, which extends a closed subtype to some infinitesimal extend.

Definition 1.1.1 Let X = SpecA be affine and C = SpecA/I a closed subtype given by an finitely
generated ideal I ⊆ A. Then the n-th infinitesimal neighborhood of C in X is the closed subtype

Cn+1 :≡ SpecA/(In+1) ⊆ SpecA.

(TODO: * emphasize pointwise perspective more (operation on closed propositions) )
Explicitly, Ik, with I = (f1, . . . , fm), is the ideal

Ik :≡

{
m∑
i=1

αixi,1 · · · · · xi,k | xi,j : I, αi : A

}
.
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So, by calculation, (f1, . . . , fm)k is generated by all k-fold products of the generators of the fi.
There is an easy way describing the union of all the k-th neighborhoods of a closed subtype, using

double negation:

Lemma 1.1.2 (using ??, ??, ??) Let X = SpecA be affine and C ⊆ SpecA a closed subtype. Then
we have ⋃

n:N
Cn = ¬¬C.

The subtype ¬¬C is also called the formal neighborhood of C.

Proof Let C be given as SpecA/(f1, . . . , fl). Then, for any x : X

¬¬C(x) = ¬¬(x ∈ C)

= ¬¬(∀i.fi(x) = 0)

= ∀i ¬¬fi(x) = 0

= ∀i fi(x) is nilpotent

– and Cn(x) implies ∀i fn
i (x) = 0. And if ∀i fn

i (x) = 0, then Cnl(x). □

1.2 Connectedness

The following is in conflict with the usual use of the word “connected” in homotopy type theory.

Definition 1.2.1 A pointed type X is called connected , if the following equivalent statements hold:
(i) Any function X → Bool is constant.

(ii) Any detachable subset is X or ∅.

Proposition 1.2.2 (using ??, ??) The set A1 is connected, that is, every function f : A1 → Bool is
constant.

Proof We embed Bool into R as the subset {0, 1} ⊆ R. (We have 0 ̸= 1 in R by (??).) Then we have a

function f̃ : A1 → R and we can assume f̃(0) = 0. Note that f̃ is an idempotent element of the algebra

RA1

, since all its values are idempotent elements of R. By (??), f̃ is given by an idempotent polynomial
p ∈ R[X] with p(0) = 0. But from this follows p = 0: we can factorize p = Xq and then calculate
p = pn = Xnqn to see that all coefficients of p are zero. □

A connected scheme, that is covered by its point and everything except the point, is already trivial.

Corollary 1.2.3 Let X be a connected scheme and∏
x:X

x = ∗ ∨ x ̸= ∗.

Then X is contractible.

Proof Assume
∏

x:X x = ∗ ∨ x ̸= ∗. Since for any proposition P , P + ¬P is a proposition, we have∏
x:X x = ∗+x ̸= ∗ and there is a map to Bool from any binary copdoduct. So we have a map X → Bool

which decides if a general x : X is the point ∗ or not. By connectedness of X, this map is constant, but
we know ∗ = ∗, so x = ∗ for all x. □

Corollary 1.2.4 (using ??, ??) ¬(
∏

x:A1 x = 0 ∨ x ̸= 0)

Proof By corollary 1.2.3 and by the connectedness of A1 (proposition 1.2.2), we can show from
∏

x:A1 x =
0 ∨ x ̸= 0 that A1 is contractible. This contradicts 1 ̸= 0. □

Example 1.2.5 The ring R is a local ring, so we have Πx∈R∥inv(x)∨ inv(1−x)∥, but we can prove that
the statement without the propositional truncation is false:

¬Πx∈R(inv(x)⨿ inv(1− x)).

Namely, a witness of Πx∈R(inv(x)⨿ inv(1−x)) is equivalently a function f : R → Bool with the property
that

if f(x) then inv(x) else inv(1− x).

But by proposition 1.2.2, the function f must be constant, contradicting the fact that ¬inv(x) for x = 0
and ¬inv(1− x) for x = 1.

In particular, not every type family B : A1 → U with Πx:A1∥B(x)∥ merely admits a choice function
Πx:A1B(x).
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1.3 Compactness properties

?? can be read as a compactness property for countable disjoint open coverings of affine schemes, since
functions f : SpecA → N correspond to decompositions SpecA =

∑
n:N Un, and the subsets Un ⊆ X are

automatically open because they are detachable.
The following example shows that we can not expect all affine schemes to be compact with respect to

arbitrary set-indexed open coverings.

Example 1.3.1 For A a finitely presented R-algebra, consider the open cover (Ui)i∈I , where the index
set is I = SpecA and for each i we set Ui = SpecA = D(1). This indeed covers all points of SpecA, since
for every x ∈ SpecA we clearly have x ∈ Ux. To give a finite subcover of this cover, however, means to
give a natural number n and a function Finn → SpecA with the property that SpecA is empty if n = 0.
In essence, it means to decide whether SpecA is inhabited or not. We claim that this is not possible for
all finitely presented R-algebras:

¬(ΠA:f.p.R-Alg∥SpecA⨿ ¬ SpecA∥).

Indeed, for A = R/(x), the proposition ∥SpecA⨿¬ SpecA∥ means x = 0∨ x ̸= 0, and we saw in ?? that
this is not true for all x ∈ R.

There is, however, a notion of compactness, which seems to correspond to completeness and therefore
also leads to a notion of properness, which is treated in [Che+23b].

1.4 Dense subtypes

Algebraic preparation:

Lemma 1.4.1 If P : R[X] and we have P ̸= 0, or equivalently, that merely some coefficient of P is
non-zero, then P is nilregular.

Proof If P is non-zero, its content c(P ) is top. For any Q : R[X] with P ·Q nilpotent, by [LQ15][Theorem
III.2.1] we also have c(P ·Q) = c(P ) ∧ c(Q) = c(Q) is bottom. So Q is nilpotent. □

In a lattice, an element a can be called dense if a ∧ b = ⊥ implies b = ⊥. We apply this definition to
the lattice of open subtypes of a type X, but generalize it to allow for non-open dense subtypes too.

Definition 1.4.2 A subtype A ⊆ X is called dense, if for all open subtypes V ⊆ X such that V ∩A = ∅,
we have V = ∅.

Lemma 1.4.3 Let X be a type.
(a) If D ⊆ X is dense, then X ̸= ∅ implies D ̸= ∅.

(b) Let D ⊆ X be dense and open and let E ⊆ X be dense, then D ∩ E is dense.

(c) Let D ⊆ X be dense and E ⊆ X any subtype, then D ∪ E is dense.

Proof (a) Assume D ⊆ X is dense and empty. Then X ∩ D = ∅ and by denseness of D, the open
subtype X ⊆ X is empty, which contradicts X ̸= ∅.

(b) Let V ⊆ X be open with V ∩D ∩ E = ∅. Since V ∩D is open and E is dense, we get V ∩D = ∅,
and by denseness of D, we get V = ∅.

(c) Let V ⊆ X be open with
∅ = V ∩ (D ∪ E) = (V ∩D) ∪ (V ∩ E).

This implies V ∩D = ∅, so V = ∅. □

Being dense is double negation stable — which has the practical implication, that we can “open”
double-negated statements when showing denseness.

Proposition 1.4.4 Being dense is ¬¬-stable: if a subtype D ⊆ X is not not dense, then it is dense.

Proof We use general facts about modalities. V = ∅ is a pointwise negated statement and therefore
¬¬-stable. Since the proposition that D is dense is a

∏
-type with values in V = ∅, it is also ¬¬-stable.□
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Lemma 1.4.5 (using ??, ??, ??) Let X be a type, let U ⊆ X be an open subtype and let D ⊆ X be
dense. Then U ∩D is a dense subtype of U .

Proof Let V ⊆ U be open with V ∩(U ∩D) = ∅. Using ??, V ⊆ X is open and V ∩D = V ∩(U ∩D) = ∅.
So V = ∅ since D is dense in X. □

Being dense is a local property in the following sense:

Lemma 1.4.6 (using ??, ??, ??) Let X be a type and Ui ⊆ X be open subtypes for i : I such that⋃
i:I Ui = X. Then A ⊆ X is dense, if and only if, A ∩ Ui is dense in Ui for every i.

Proof Let all A ∩ Ui be dense. To show that A is dense, let V ⊆ X be open and V ∩ A = ∅. Then
∅ = V ∩A =

⋃
i:I(V ∩Ui)∩ (A∩Ui), so (V ∩Ui)∩ (A∩Ui) = ∅ for all i : I. But V ∩Ui is open in Ui, so

by assumption, V ∩ Ui = ∅ for all i : I. So V =
⋃

i:I V ∩ Ui = ∅ and A is dense.
The other direction follows from lemma 1.4.5. □

We will now characterize dense open subsets of affine schemes.

Definition 1.4.7 Let A be a commutative ring.
(a) An element r : A is nilregular , if for all x : A, such that rx is nilpotent, x is nilpotent.

(b) A list of elements r1, . . . , rn : A is jointly nilregular , if for all x : A, such that all rix are nilpotent,
x is nilpotent.

Proposition 1.4.8 Any regular (??) element r : A is nilregular.

Lemma 1.4.9 (using ??, ??, ??) Let X = SpecA be affine and U ⊆ X open. Then U is dense, if and
only if, U = D(r1, . . . , rn), with jointly nilregular r1, . . . , rn : A.

Proof Let U ⊆ X be dense and open. By ??, there are r1, . . . , rn : A such that U = D(r1, . . . , rn). Let
x : A such that all rix are nilpotent. By ??, this implies D(rix) = ∅ for all i. Since D(x)∩D(r1, . . . , rn) =
D(r1x)∪· · ·∪D(rnx) = ∅, this implies D(x) = ∅. Therefore x is nilpotent and the ri are jointly nilregular.

Now let U = D(r1, . . . , rn) with jointly nilregular r1, . . . , rn : A. Without loss of generality, let
V = D(f) and D(f) ∩ U = ∅. Then D(r1f) ∪ · · · ∪D(rnf) = ∅, so D(rif) = ∅ for all i. This means rif
is nilpotent and therefore, f is nilpotent and D(f) = ∅. □

Corollary 1.4.10 (using ??, ??, ??) The only dense open subset of 1 = SpecR is 1.

Proof Let U ⊆ 1 be dense and open. By lemma 1.4.9, there are jointly nilregular r1, . . . , rn : R, such
that U = D(r1, . . . , rn). But jointly nilregular entails, that one of the ri is invertible, so U = 1. □

Theorem 1.4.11 (using ??, ??, ??)
Let X be a scheme. An open subtype U ⊆ X is dense, if and only if, there is an open affine cover
Ui = SpecAi and U ∩ Ui = D(ri1, . . . , rini) with jointly nilregular ri1, . . . , rini : Ai for all i.

Proof By lemma 1.4.9 and lemma 1.4.6. □

Classicly, one possible definition of a dense subset is that the closure is the whole space. We will see
an approximation to that in lemma 1.4.14. There are lots of examples of non-trivial dense subsets. For
example, the next section will contain a proof, that any non-empty open subset of A1 is dense.

We can extend the operation from definition 1.1.1 to schemes:

Definition 1.4.12 (using ??, ??, ??) Let X be a scheme and C ⊆ X a closed subscheme. Then Cn is
the closed subscheme of X, defined locally as in definition 1.1.1.

Proof We need the axioms to locally get ideals that generate the closed subscheme. We need to show
that the construction can be done locally, but this is the case, since for any open affine U , (C ∩ U)n ⊆
¬¬(C ∩ U) ⊆ U by ??. □

Lemma 1.4.13 (using ??, ??, ??) Let U ⊆ X be a dense open subtype of a scheme. For any closed
subtype V containing U , there merely is an n : N, such that V n = X.
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Proof It is enough to do the construction for an open affineW = SpecA, where V ∩U = SpecA/(f1, . . . , fn)
and U = D(g1, . . . , gl). By theorem 1.4.11 we can assume the g1, . . . , gl are jointly nilregular. For any fi
we know fi · gj is nilpotent, since

¬D(figj) = ¬{x : W | figi(x) invertible} = ∅,

since if figj(x) is invertible, then gj(x) is invertible, but then, we are in U and fi(x) has to be zero, which
contradicts its invertibility.

By the joint nilregularity of the gj , fi is nilpotent, so fn
i = 0 and V n = W . □

In the situation of a clopen subset, we get the classical equality:

Lemma 1.4.14 (using ??, ??, ??) Let U ⊆ X be a dense open and closed subtype of a scheme, then
U = X

Proof By lemma 1.4.13, Un = X. By lemma 1.1.2, we have

X ⊆ Un ⊆ ¬¬U = U . □

1.5 Closed dense subtypes

This section is due to Hugo Moeneclaey.

Lemma 1.5.1 For any type X, a closed subtype C : X → Prop is dense if and only if:∏
x:X

¬¬C(x)

Proof Assume C a closed subtype of X. If C is dense, as ¬C is open and ¬C ∩ C = ∅, we have that
¬C = ∅ which is precisely what we want.

Conversely assume that for all x : X we have ¬¬C(x). Let U be an open subtype of X such that
U ∩ C = ∅. Then for any x : X we have ¬(C(x) ∧ U(x)) as well as ¬¬C(x), so that we have ¬U(x). So
we have U = ∅ and C is indeed dense. □

Corollary 1.5.2 The type of closed propositions C such that ¬¬C classifies closed dense subtypes.

Proposition 1.5.3 (using ??, ??) A closed subscheme Spec(A/I) of an affine scheme Spec(A) is dense
if and only if I is nilpotent.

Proof Assume Spec(A/I) ⊂ Spec(A) dense. For any f : I, we have Spec(A/I) ∩ D(f) = ∅ and D(f)
open so that D(f) = ∅ and f is nilpotent.

Conversely, let I be a finitely generated nilpotent ideal in A generated by f1, · · · , fn. Then for all
x : Spec(A), we have x ∈ Spec(A/I) if and only if:

f1(x) = 0 ∧ · · · ∧ fn(x) = 0

But as f1, · · · , fn are nilpotent we have:

¬¬(f1(x) = 0) ∧ · · · ∧ ¬¬(fn(x) = 0)

so that:
¬¬(x ∈ Spec(A/I))

and Spec(A/I) is dense by lemma 1.5.1. □

1.6 Irreducible and reducible types

We start with the notion of reducible types and will then pass to the negation of this concept, to irreducible
types.

Definition 1.6.1 A type is called reducible, if there are two disjoint, inhabited open subtypes.

Proposition 1.6.2 The scheme SpecR[X,Y ]/(XY ) is reducible.
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Proof We take the subsets D(X), D(Y ) ⊆ SpecR[X,Y ]/(XY ). Then

D(X) ∩D(Y ) = { (x, y) | xy = 0 ∧ x ̸= 0 ∧ y ̸= 0 } = ∅.

And (1, 0) ∈ D(X), (0, 1) ∈ D(Y ). □

Definition 1.6.3 A type X is called irreducible, if the following equivalent propositions hold:
(i) X is not reducible.

(ii) Any non-empty open U ⊆ X is dense.

(iii) For any open disjoint U, V ⊆ X such that U ̸= ∅, we have V = ∅.

Proposition 1.6.4 Being irreducible is ¬¬-stable.

Proof By the definition as not reducible, or by proposition 1.4.4. □

Example 1.6.5 Every proposition is an irreducible type, since any two inhabited subtypes intersect.

Proposition 1.6.6 (using ??, ??, ??) A1 is irreducible.

Proof Let U ⊆ A1 with U ̸= ∅. We have to show that U is dense. Let U = D(f1, . . . , fn). We merely
have a bound for the degree of each of the fi : R[X], so we can concatenate all coefficients of the fi and,
since U ̸= ∅, we know that vector is not the zero-vector. So one of the fi is nilregular by lemma 1.4.1. In
particular, the elements f1, . . . , fn are jointly nilregular, so U is dense by lemma 1.4.9. □

Example 1.6.7 The scheme SpecR[X,Y ]/(XY ) is not irreducible.

Remark 1.6.8 In a classical setting, reducibility and irreducibility are usually defined in terms of closed
subsets instead of open subsets. However, this does not give the correct notion in our setting, as the
example SpecR[X,Y ]/(XY ) shows: this scheme is not the union of the closed subsets V (X) and V (Y ).

We will now explore the relation of connectedness and irreducibility. It is not the case, that any open
dense subtype of a connected scheme is connected:

Example 1.6.9 Let us first show, that V (XY ) ⊆ A2 is connected. Let f : V (XY ) → Bool be a function
and assume without loss of generality, that f(0, 0) = 1. Then the restriction of D(f) to both, V (X) or
V (Y ) is dense. Since f(x) = 1 is closed and holds for x : D(f), f(x) = 1 holds not not for all x : V (XY ),
which is enough.

The open subtype D(X,Y ) ⊆ V (XY ) ⊆ A2 is not connected. This is witnessed by the function

X

X + Y
.

Proposition 1.6.10 (using no axioms) Any irreducible pointed type is connected.

Proof Let X be an irreducible pointed type and let a decomposition into detachable subsets X = U ⊔V
be given. In particular, U and V are open subsets, and we can assume that the base point of X lies in
U . But then U is dense since X is irreducible, so we have V = ∅ and U = X. □

Proposition 1.6.11 (using ??, ??, ??) Let X be an irreducible type and U ⊆ X an open subtype.
Then U is also irreducible.

Proof Let V,W ⊆ U be open subtypes with V ∩ W = ∅. Assume that both V and W are nonempty,
now we have to show a contradiction. By ??, V and W are also open subsets of X, so we indeed get a
contradiction from the fact that X is irreducible. □

Lemma 1.6.12 Let X be irreducible and Y : X → Schqc be a family of irreducible types. Then
(x : X)× Yx is irreducible.

The original version of the following proof is due to David Wärn.
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Proof Let U, V ⊆ X × Y be disjoint open subsets with (a, b) ∈ U , (c, d) ∈ V . Consider the subtypes

Ua :≡ {x : X | (x, b) ∈ U }

and

Vc :≡ {x : X | (x, d) ∈ V }.

These are two inhabited open subtypes of X, so they can not be disjoint. Since we want to show a
contradiction, we can assume we have e ∈ Ua ∩ Vc. But then

Ue :≡ { y : Ye | (e, y) ∈ U }

and

Ve :≡ { y : Ye | (e, y) ∈ V }

are open subtypes of Ye which are disjoint since U and V are disjoint, and inhabited by b respectively d.
This contradicts the irreducibility of Ye. □

Lemma 1.6.13 Let X be irreducible and f : X → Y be surjective, then Y is irreducible.

Proof Using the definition with disjoint opens. □

We will see in proposition 3.1.2, that the projective n-space Pn is irreducible.

1.7 Separated types and apartness

Proposition 1.7.3 was found and proven together with Marc Nieper-Wißkirchen and Ingo Blechschmidt.

Definition 1.7.1 A type X is separated , if for all x, y : X the type x = y is a closed proposition, that
is, the diagonal X → X ×X is the embedding of a closed subtype.

Definition 1.7.2 An apartness relation on X is a relation # : X → X → Prop, such that it is
(i) irreflexive:

∏
x:X ¬(x#x)

(ii) symmetric:
∏

x,y:X x#y → y#x

(iii) and cotransitive:
∏

x,y,z:X x#z → x#y ∨ y#z.

Proposition 1.7.3 If X is a separated scheme, then inequality is an apartness relation.

Proof MISSING □

Proposition 1.7.4 (using ??, ??, ??) Let X be a separated scheme and U, V be open affine in X.
Then U ∩ V is affine.

Proof U ∩ V is equivalently the closed subtype {(x, y) : U × V | x = y}. U × V is affine by ?? and a
closed subtype of an affine scheme is affine by ??. □

Example 1.7.5 (using ??, ??) It is not the case that for every finitely presented R-algebra A and every
A-module M the map ηM is injective.

Proof Instead of giving a single counterexample, we construct a family of potential counterexamples,
indexed by an element f : R. We set A :≡ R/(f) and

M :≡ A1/⟨{1 | f =R 0}⟩.

Then we have M ⊗x = 0 for all x : SpecA: an element x : SpecA is a witness that f : R is invertible and
if f is invertible then A = 0, so M = 0, so M ⊗ x = 0. This implies that if ηM is injective then M = 0.
But we have M = 0 if and only if 1A ∈ ⟨{1 | f = 0}⟩ if and only if 1A a linear combination (of some
length n) of elements of the set {1 | f = 0} if and only if f = 0 (n > 0) or 1 =A 0, that is, f is invertible
(n = 0). In summary, if ηM is injective for every choice of f : R, then every f : R is zero or invertible.
But this would be a contradiction to corollary 1.2.4. □
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2 Reduced schemes

2.1 Reduced schemes (obsolete?)

(What follows is a not completely satisfactory candidate definition of reduced schemes. Marc Nieper-
Wißkirchen and Fabian Endres were involved in finding this notion.)

There is a candidate definition of reduced schemes. The analogue to the classical definition, that an
affine scheme is reduced, if its algebra of functions is reduced, is expected to be useless in the synthetic
setup. We start with a notion which is only suitable for affine schemes1.

Definition 2.1.1 An affine scheme X = SpecA is reduced , if for all functions f : A, nilpotency implies
¬¬(f = 0).

An alternative, stronger criterion would be that if f : A is nilpotent, then f = r1a1 + . . .+ rnan with
ri : R nilpotent and ai : A.

Example 2.1.2 (a) D(1) is not reduced. The algebra of functions is R + εR and we know that ε is
nilpotent and non-zero.

(b) A1 is reduced. To see this, let f : R[X] be nilpotent. Then all coefficients of f are nilpotent and
since we proof a double-negation, we can assume they are zero.

(c) A basic open D(f) of an affine reduced scheme is reduced: If
(

a
f l

)n
= 0, we want to show ¬¬ a

f l = 0.

Since we want to show a double negated proposition, we can decide if f is regular or nilpontent. If
it is regular, fkan = 0 implies ¬¬a = 0 and if it is nilpotent, every function on D(f) is 0 anyway.

(d) Any closed dense proposition, i.e. affine scheme of the form Spec(R/(ε1, . . . , εn)) is reduced.

(e) The cross with one infinitesimal axis SpecR[X,Y ]/(XY, Y 2) is not reduced, since Y is a nilpotent,
non-zero function.

From a notion of “reduced” for general schemes, we would expect that it is closed under
(i) taking open subtypes

(ii) and finite open unions.
For the notion of affine reduced scheme from above, (i) holds for basic opens of affines, which is enough

to make the following definition well-defined and fullfil the requirements above:

Definition 2.1.3 A scheme X is reduced if there is a finite affine open cover X =
⋃

i Ui such that each
Ui is reduced.

In fact, if there is one cover, any cover will be reduced.

Remark 2.1.4 For a reduced scheme X we have:
(i) Any open U ⊆ X is reduced.

(ii) For any finite open affine cover of X =
⋃

Ui, all Ui are reduced.

Proof Any open subscheme of an affine scheme is covered by basic opens, so it is reduced. For any cover
(Ui)i of X and a given reduced cover (Vj)j , we have Ui =

⋃
j Vj ∩ Ui, so Ui is reduced. □

Example 2.1.5 V (X2) ⊆ P2 is not reduced.

2.2 Reduced types

For any type X, we write X for the formally étale replacement of X.

Definition 2.2.1 A type X is reduced if for all P : X → Prop we have that:

(∀(x : X). P (x)) → ∀(x : X). P (x)

Lemma 2.2.2 Reduced types are closed under finite colimits.

1An example where this fails for general schemes, is V (X2) ⊆ P2.
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Proof Because the formally étale replacement commutes with finite limits. □

Lemma 2.2.3 Reduced types are closed under Σ-types.

Proof Given X reduced and (Yx)x:X a family of reduced type, we have that:

∀(z : (x : X)× Yx). P (z)

= ∀(x : X)(y : Yx). P (x, y)

→ ∀(x : X). ∀(y : Yx). P (x, y)

→ ∀(x : X)(y : Yx). P (x, y)

= ∀(z : (x : X)× Yx). P (z) □

Lemma 2.2.4 If we have a surjection f : X → Y and X is reduced, then Y is reduced.

Proof Assume given P : Y → Prop. We have that:

∀(y : Y ). P (y)

= ∀(x : X). P (f(x))

→ ∀(x : X). P (f(x))

= ∀(y : Y ). P (y) □

Lemma 2.2.5 Any connected type is reduced.

Proof Let X be connected. Since we want to prove a proposition, we can assume x : X. Then we have
a surjection:

x : 1 → X

and 1 is reduced so we conclude by lemma 2.2.4. □

Lemma 2.2.6 A type X is reduced if and only if ∥X∥0 is reduced.

Proof If X is reduced, so is ∥X∥0 by lemma 2.2.4. Conversly if ∥X∥0 is reduced, we have that:

X =
∑

x:∥X∥0

∑
y:X

[y] = x

but
∑

y:X [y] = x is connected, therefore it is reduced by lemma 2.2.5, so by lemma 2.2.3 we have that X
is reduced. □

Remark 2.2.7 The stability results for being formally smooth and being reduced are very similar.

2.3 Reduced affine schemes

Lemma 2.3.1 Assume A an f.p. algebra such that for all a : A nilpotent we have that a = 0. Then for
any f : A and b : Af nilpotent, we have that b = 0.

Proof We have that b = c
fk and there exists n : N such that bn = 0 in Af , therefore there exists k : N

such that fkcn = 0 in A. From this we know that fc is nilpotent in A, therefore fc = 0 and this implies
b = 0 as fc = 0 implies b = 0. □

Lemma 2.3.2 Assume A an f.p. algebra such that for all a : A is nilpotent we have that a = 0. Then
for any Zariski cover:

Spec(B) → Spec(A)

by basic opens and any closed dense Q ⊂ Spec(B) we have ∀(y : Spec(B)). Q(y).

9



Proof It is enough to prove the property when B = Af for f : A. Given a closed dense Q ⊂ Spec(Af )
we know that Q is of the form V (b1, · · · , bn) for b1, · · · , bn nilpotent in Af . Then by lemma 2.3.1 we have
that bi = 0 for all i, therefore:

b1 = 0 ∧ · · · ∧ bn = 0

which means Q = Spec(Af ). □

Lemma 2.3.3 Assume A an f.p. algebra such that for all a : A, if a is nilpotent then a = 0. Then
Spec(A) is reduced.

Proof Assume:
P : Spec(A) → Prop

such that:
∀(x : Spec(A)). P (x)

This means that:
∀(x : Spec(A)).∃(Q : closed dense). Q → P (x)

By Zariski local choice we get a Zariski cover by basic opens:

f : Spec(B) → Spec(A)

and a family of closed dense propositions Q : Spec(B) → Prop such that:

∀(y : Spec(B)). Q(y) → P (f(y))

By lemma 2.3.2 we have that:
∀(y : Spec(B)). Q(y)

so we have that:
∀(y : Spec(B)). P (f(y))

which is equivalent to:
∀(x : Spec(A)). P (x)

by the surjectivity of f . □

Next lemma is just generic business with modalities, and should probably be moved elsewhere.

Lemma 2.3.4 Assume given Y formally étale and f : X → Y formally étale-surjective, meaning that
for all y : Y we have:

∥fibf (y)∥

Then the induced map:
f ′ : X → Y

is surjective.

Proof Assume y : Y , we want to prove:

∃(x : X). f ′(x) =Y y

but this type is a formally étale proposition as it is the truncation of a formally étale type.
Therefore when proving it we can assume x : fibf (y) as by hypothesis ∥fibf (y)∥, and [x] gives a

witness. □

Next proposition could be called the reduced duality.

Proposition 2.3.5 Let A be an f.p. algebra such that Spec(A) is reduced. Then the map:

A → R
Spec(A)

is an equivalence.

Proof First we prove that the map is injective, and then surjective.

10



• In order to prove injectivity, it is enough to prove that for all a : A such that:

∀(x : Spec(A)). [a(x)] =R [0]

we have that:
[a] =A [0]

But this just means that:
∀(x : Spec(A)). a(x) = 0

implies that:
a = 0

which is a clear consequence of Spec(A) being reduced.

• For surjectivity, by lemma 2.3.4 it is enough to prove that the map:

A → R
Spec(A)

is formally-étale surjective. So it means than given a map f : Spec(A) → R we need to merely find
a dotted lift in:

R

Spec(A) R

up to formally étale replacement. By Zariski local choice we get local lifts gi on a cover of by basic
opens (Ui)i:I . Consider i, j : I, then for all x : Ui ∩Uj we have that [gi(x)] =R [gj(x)] which means
that gi − gj is nilpotent in Ui ∩ Uj . So by lemma 2.3.1 we have that:

gi = gj

when restricted to the basic open Ui∩Uj . But there is finitely many such i, j, so when building the
lift up to formally étale replacement we can assume gi = gj for all i, j and get a global lift. □

Remark 2.3.6 For A f.p. we have that:

Spec(A) = HomR(A,R) = HomR(A,R)

where the first step relies crucially on A being f.p. and formally étale being lex, and the second step
working for any lex modality. (NOT CHECKED IN DETAILS)

Theorem 2.3.7
Let A be an f.p. algebra. The following are equivalent:
(i) Spec(A) is reduced.

(ii) For all a : A nilpotent, we have that a = 0.

(iii) For all a : A nilpotent, there are r1, · · · , rn : R nilpotent and a1, · · · , an : A such that:

a = r1a1 + · · ·+ rnan

(iv) The map:

A → R
Spec(A)

is an equivalence.

Proof It goes as follow:
• (iii) implies (ii). When proving:

r1a1 + · · ·+ rnan = 0

we can assume ri = 0 for all i, as they are nilpotent.
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• (ii) implies (iii). Assume a : A such that a = 0, then there is an f.g. nilpotent ideal I in R such
that:

I = 0 → a = 0

then the image of a under:
A → AI=0

is 0, and since A is strongly quasi-coherent we have that:

AI=0 = A⊗R/I = A/IA

so a ∈ IA and we can conclude.

• (ii) implies (i). By lemma 2.3.3.

• (i) implies (iv). By proposition 2.3.5.

• (iv) implies (ii). Assume a : A nilpotent, then for all x : Spec(A) we have a(x) nilpotent so that:

[a(x)] =R [0]

So the map:

A → R
Spec(A)

sends a to 0. By the assumed duality, we have that:

[a] =A [0]

which precisely means:
a = 0

as being formally étale is a lex modality. □

Remark 2.3.8 We did not manage to prove that it is not equivalent to definition 2.1.1. Is it?

2.4 Examples

For affine schemes we always use criteria (ii) from theorem 2.3.7.

Lemma 2.4.1 For all n : N, we have that Rn is reduced.

Proof If P : R[X1, · · · , Xn] is nilpotent then all its coefficients are nilpotent, therefore when proving
P = 0 we can assume all the coefficients of P are 0. □

Lemma 2.4.2 Open propositions are reduced.

Proof By lemma 2.3.1 this holds for basic open proposition. We conclude by lemma 2.2.2 and lemma 2.2.4.□

Corollary 2.4.3 If (Ui)i:I is a Zariski cover of X, then X is reduced if and only if Ui is reduced for all
i : I.

Lemma 2.4.4 Closed dense propositions are reduced.

Proof Assume I nilpotent f.g. ideal in R, and s : R/I such that sn = 0 in R/I. There we can get an
r : R such that [r] = s in R/I and rn ∈ I. Then r is nilpotent, so r = 0 and this implies s = 0. □

Lemma 2.4.5 The affine scheme Spec(R[X,Y ]/(XY )) is reduced.

Proof We have A :≡ R ·1⊕XR[X]⊕Y R[Y ] = R[X,Y ]/(XY ) as R-modules, where the multiplication in
A is given by multiplication of polynomials, forgetting all coefficients of mixed monomials. For a general
nilpotent α+ P +Q in A with α : R, P : XR[X] and Q : Y R[Y ]:

0 = (α+ P +Q)n =

n∑
k=0

(
n

n− k

)
αn−k(P k +Qk)

means that α is nilpotent. But then all terms in the sum to the right are nilpotent, except (Pn + Qn).
But then (Pn + Qn) is nilpotent as well, which means that P and Q are nilpotent polynomials. So we
can conclude with Theorem 2.3.7 (iii) . □

We expect that standard étale scheme are reduced. We have not proven it yet, but we have the
following:

Remark 2.4.6 If standard étale schemes are reduced, then any smooth scheme is reduced.
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3 Applications

3.1 Topological Properties of Projective Space

Proposition 3.1.1 Pn is separated.

Proof We have to show that x = y is closed for all x, y : Pn. Since we are proving a proposition, we
may assume represantatives [x0 : · · · : xn] = [y0 : · · · : yn] and an index i such that xi is invertible. Let
λ :≡ yi

xi
, then x = y is equivalent to ∏

j

λxj = yj

– which is closed. □

Proposition 3.1.2 (using ??, ??, ??) Pn is irreducible.

Proof By proposition 1.6.6 and lemma 1.6.12, An+1 is irreducible. An+1 \ {0} is an open subtype of
An+1, so it is also irreducible by proposition 1.6.11. Finally, the projection An+1 \{0} → Pn is surjective,
so by lemma 1.6.13, Pn is irreducible. □

The following conclusion could also be drawn from our results about functions on Pn in the next
section.

Corollary 3.1.3 (using ??, ??, ??) Pn is connected.

Proof Note first that Pn is pointed by [1 : 0 : · · · : 0]. By proposition 3.1.2, Pn is irreducible and by
proposition 1.6.10 any irreducible pointed type is connected. □

3.2 A Property of R

Theorem 3.2.1 (using ??, ??, ??)
The ring R is not coherent, i.e. it is not the case, that all finitely generated ideals in R are finitely
presented.

Proof We will show, that it is not the case, that any R-module map R → R has a finitely generated
kernel. Every R-linear map φ : R → R is of the form φx(z) = xz for some x : R, namely x :≡ φ(1).
Assume it is always possible to find generators y1, . . . , yn : R of the kernel of φx. That means there is a
map

c :
∏
x:R

(
∃y1,...,yn:R

∏
z:R

(
φx(z) = 0 iff ∃λ1,...,λn:Rz =

n∑
i=1

λiyi

))
.

By ?? and boundedness (??), we translate the first “∃” to a function g : D(f) → Rn on a neighborhood
D(f) ⊆ R of 0 : R. We know that if x is invertible, then ker(φx) = (0), which means yi = 0 for all i. So
g(x) must be the 0-vector for all x : D(f) ∩ D(X). Since A1 is irreducible by proposition 1.6.6, D(X)
and D(f) are both already dense by being non-empty. By lemma 1.4.5 D(f) ∩D(X) is dense in D(f),
so by lemma 1.4.13 applied to V (gi) ⊆ D(f), the entries gi(x) of g(x) must be nilpotent for all x : D(f).
But this is a contradiction, since for x = 0, the kernel of φx is R and there must be an invertible entry
in g(x). □
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