Random Facts in Synthetic Algebraic Geometry

???
April 26, 2024

Abstract

The following is a collection of results in synthetic algebraic geometry, that didn't find a place anywhere else so far.

Contents

1 Translations of Classical Proofs 1
2 Homogeneity 2
3 Serre's affineness theorem 4
4 Line bundles and divisors 4
4.1 Regular sections and regular closed subschemes 4
5 Segre Embedding 5
6 Blow-up of Projective Space 5
7 External justification of axioms 6
7.1 Justification of ?? 6
8 Group schemes are not smooth 7
9 Hilbert's Nullstellensatz 7
10 Automorphisms of projective space 8
11 Projective module and vector bundle 9
12 Overtness 10

1 Translations of Classical Proofs

This is a proof that pullbacks of schemes are schemes, which is analogous to what could be found in a textbook.

Theorem 1.0.1 (using ??, ??, ??)
Let

$$
X \xrightarrow{f} Z \stackrel{g}{\longleftarrow} Y
$$

be schemes, then the pullback $X \times_{Z} Y$ is also a scheme.
Proof (alternative proof of theorem 1.0.1) Let W_{1}, \ldots, W_{n} be a finite affine cover of Z. The preimages of W_{i} under f and g are open and covered by fintely many affine open $U_{i k}$ and $V_{i j}$ by ??. This leads to the following diagram:

where the front and bottom square are pullbacks by definition. By pullback-pasting, the top is also a pullback, so all diagonal maps are embeddings.
$P_{i j}$ is open, since it is a preimage of $V_{i j}(? ?)$, which is open in Y by ??. It remains to show, that the $P_{i j}$ cover $X \times_{Z} Y$ and that $P_{i j}$ is a scheme. Let $x: X \times_{Z} Y$. For the image w of x in W, there merely is an i such that w is in W_{i}. The image of x in V_{i} merely lies in some $V_{i j}$, so x is in $P_{i j}$.

We proceed by showing that $P_{i j}$ is a scheme. Let $U_{i k}$ be a part of the finite affine cover of U_{i}. We repeat part of what we just did:

So by ??, $P_{i j k}$ is affine. Repetition of the above shows, that the $P_{i j k}$ are open and cover $P_{i j}$.

2 Homogeneity

Definition 2.0.1 A graded R-algebra S is an R-algebra S together with the datum of a direct sum decomposition

$$
S=\oplus_{n \in \mathbb{Z}} S_{n}
$$

as an R-module such that $S_{k} \cdot S_{\ell} \subseteq S_{k+l}$ for every $k, \ell \in \mathbb{Z}$. We identify each S_{n} for $n \in \mathbb{Z}$ with its image in S. The elements of S_{n} are called homogeneous of degree n.

Remark 2.0.2 The datum of a grading of an R-algebra S thus gives us an essentially finite decomposition ${ }^{1} u=\sum_{n \in \mathbb{Z}} u_{n}$ for every $u \in S$ where each u_{n} is homogeneous of degree n. Furthermore, the decomposition of a homogeneous element u is just $u=u$.

Proposition 2.0.3 Let S be a graded R-algebra and let $X:=\operatorname{Spec} S$. For each $t \in R^{\times}$and each $p \in X$ we define

$$
t \cdot p:=\left(u \mapsto \sum_{n \in \mathbb{Z}} p\left(u_{n}\right) t^{n}\right) \in \operatorname{Spec} S
$$

This defines an operation of the multiplicative group R^{\times}on X.
Proof That $1 \cdot p=p$ for every $p \in X$ follows from $p(u)=\sum_{n \in \mathbb{Z}} p\left(u_{n}\right) \cdot 1^{n}$. That $r \cdot\left(r^{\prime} \cdot p\right)=\left(r \cdot r^{\prime}\right) \cdot p$ follows from the homogeneity of every u_{n}.

Theorem 2.0.4

The construction in proposition 2.0.3 yields an identification between the type of graded R-algebras and the type of affine schemes together with an action of the multiplicative group R^{\times}.

[^0]Proof We give the converse construction. Let $X=\operatorname{Spec} S$ be an affine scheme together with the datum $R^{\times} \times X \rightarrow X$ of an action of the multiplicative group R^{\times}. By synthetic quasi-coherence, the function $R^{\times} \times X \rightarrow X$ yields a homomorphism

$$
\alpha(t): S \rightarrow S\left[t, t^{-1}\right]=S \otimes R\left[t, t^{-1}\right], u \mapsto \sum_{n \in Z} u_{n} t^{n}
$$

of R-algebras where the sum on the right hand side is essentially finite. That $1 \cdot p=p$ for all $p \in X$ is equivalent to $\alpha(1)=\operatorname{id}_{S}$, which, in turn, yields $u=\sum_{n \in \mathbb{Z}} u_{n}$. That $t \cdot\left(t^{\prime} \cdot p\right)=\left(t \cdot t^{\prime}\right) \cdot p$ is equivalent to $\left(\alpha(t) \otimes \operatorname{id}_{R\left[t, t^{-1}\right]}\right) \circ \alpha\left(t^{\prime}\right)=\alpha\left(t \cdot t^{\prime}\right)$, from which $\alpha(t)\left(u_{n}\right)=u_{n} t^{n}$ follows.

Remark 2.0.5 Let S be a graded R-algebra. The action of R^{\times}on $\operatorname{Spec} S$ induces a natural action of R^{\times}on the R-algebra of functions on Spec S given by

$$
R^{\mathrm{Spec} S} \times R^{\times} \rightarrow R^{\mathrm{Spec} S},(f, t) \mapsto(p \mapsto f(t \cdot p))
$$

Under the identification $R^{\mathrm{Spec} S}=S$ given by synthetic quasicoherence, this gives the action

$$
S \times R^{\times} \rightarrow S,(u, t) \mapsto \sum_{n \in \mathbb{Z}} u_{n} t^{n}
$$

of R^{\times}on the R-algebra S.
Example 2.0.6 Let V be a finitely presented R-module. The symmetric algebra $\operatorname{Sym}^{*} V$ of V over R is naturally graded. In particular, the affine scheme

$$
V^{\vee}:=\operatorname{Spec} \operatorname{Sym}^{*} V
$$

carries a natural action by the multiplicative group R^{\times}.
Remark 2.0.7 We write V^{\vee} as

$$
\operatorname{Spec}_{\operatorname{Sym}^{*}} V=\operatorname{Hom}_{R-\mathrm{Alg}}\left(\operatorname{Sym}^{*} V, R\right)=\operatorname{Hom}_{R-\mathrm{Mod}}(V, R)
$$

by the universal property of $\mathrm{Sym}^{*} V$. In particular, V^{\vee} carries the structure of a (finitely copresented) R-module. Moreover, the natural action of R^{\times}on the left hand side corresponds to scalar multiplication on the right hand side.

From the above, we can deduce that V is reflexive:

Theorem 2.0.8

Let V be a finitely presented R-module. Set

$$
V^{\vee \vee}:=\operatorname{Hom}_{R-\operatorname{Mod}}\left(V^{\vee}, R\right)
$$

The natural map

$$
V \rightarrow V^{\vee \vee}, f \mapsto(p \mapsto p(f))
$$

is an isomorphism of R-modules. In particular, V is reflexive and the dual of every finitely copresented R-module (which is always the dual of a finitely presented R-module) is finitely presented.

Proof The identification

$$
\operatorname{Sym}^{*} V \rightarrow R^{\mathrm{Spec} \mathrm{Sym}^{*} V}=R^{V^{\vee}}
$$

is an identity of R-algebras with an R^{\times}-action. In particular, the homogeneous elements of degree 1 on the left hand side correspond to the homogeneous elements of degree 1 on the right hand side. This yields an isomorphism

$$
\phi: V \rightarrow \operatorname{Hom}_{R^{\times}}\left(V^{\vee}, R\right):=\left\{u: V^{\vee} \rightarrow R \mid \forall t \in R^{\times} \forall v \in V: u(v t)=u(v) t\right\}, v \mapsto(p \mapsto p(v))
$$

of R-modules. As the image of ϕ lies inside $V^{\vee \vee} \subseteq \operatorname{Hom}_{R^{\times}}\left(V^{\vee}, R\right)$ we actually have $V^{\vee \vee}=\operatorname{Hom}_{R^{\times}}\left(V^{\vee}, R\right)$ and the theorem is proven.

Remark 2.0.9 It follows from the above that for a finitely copresented R-module V^{\vee}, a (1-)homogenous map $V^{\vee} \rightarrow R$ is already R-linear (principle of microlinearity).

3 Serre's affineness theorem

Ingo Blechschmidt and David Wärn proved the following analogue of Serre's theorem on affineness

Theorem 3.0.1

Let X be a scheme such that $H^{1}(X, I)=0$, for all $I: X \rightarrow R-\operatorname{Mod}_{\text {wqc }}$, then X is affine.
Here is a consequence:
Corollary 3.0.2 Let X be an affine scheme and $Y: X \rightarrow \operatorname{Sch}_{\mathrm{qc}}$, such that each Y_{x} is affine. Then $(x: X) \times Y_{x}$ is affine.

Proof Let $M:(x: X) \times Y_{x} \rightarrow R$ - $\operatorname{Mod}_{\text {wqc }}$. Then (explanations for the steps below):

$$
\begin{aligned}
H^{1}\left((x: X) \times Y_{x}, M\right) & \left.=\|\left(\left(x, y_{x}\right):(x: X) \times Y_{x}\right) \rightarrow K\left(M_{\left(x, y_{x}\right)}, 1\right)\right) \|_{\text {set }} \\
& =\left\|(x: X) \rightarrow\left(\left(y_{x}: Y_{x}\right) \rightarrow K\left(M_{\left(x, y_{x}\right)}, 1\right)\right)\right\|_{\text {set }} \\
& =\left\|(x: X) \rightarrow K\left(\left(y_{x}: Y_{x}\right) \rightarrow M_{\left(x, y_{x}\right)}, 1\right)\right\|_{\text {set }} \\
& =0
\end{aligned}
$$

The first step, after expanding the definition, is just currying. To commute the Eilenberg-MacLane space with the dependent function type, we use that Y_{x} is affine and therefore the type $\left(y_{x}: Y_{x}\right) \rightarrow K\left(M_{\left(x, y_{x}\right)}, 1\right)$ is connected. It is a delooping of $\left(y_{x}: Y_{x}\right) \rightarrow M_{\left(x, y_{x}\right)}$, so by connectedness, it must be equivalent to $K\left(\left(y_{x}: Y_{x}\right) \rightarrow M_{\left(x, y_{x}\right)}, 1\right)$. The last step uses that X is affine, and $\left(y_{x}: Y_{x}\right) \rightarrow M_{\left(x, y_{x}\right)}$, as a schemeindexed product of weakly quasi-coherent modules, is again weakly quasi-coherent.

4 Line bundles and divisors

4.1 Regular sections and regular closed subschemes

In classical algebraic geometry, there is the concept of a generic section of a line bundle. Informally, the generic sections have the smallest possible vanishing set. The following definition corresponds to this notion:

Definition 4.1.1 Let X be a type and $\mathcal{L}: X \rightarrow R$-Mod a line bundle. A section

$$
s: \prod_{x: X} \mathcal{L}_{x}
$$

is regular, there merely is a trivializing affine cover $U_{1}=\operatorname{Spec} A_{1}, \ldots, U_{n}=\operatorname{Spec} A_{n}$ of \mathcal{L}, such that each trivialized restriction

$$
s_{i}: \operatorname{Spec} A_{i} \rightarrow R
$$

is a regular element (??) of $\left(\operatorname{Spec} A_{i} \rightarrow R\right)=A_{i}$.
Lemma 4.1.2 Let $s: \operatorname{Spec} A \rightarrow R$. s being regular is Zariski-local, i.e. for all Zariski-covers U_{1}, \ldots, U_{n} of $\operatorname{Spec} A, s$ is regular, if and only if it is regular on all U_{i}.

Proof It is enough to check this for a localization at $f: A$. Let

$$
\frac{s}{1} \cdot \frac{g}{f^{k}}=0
$$

then $f^{l} s g=0$, which implies $f^{l} g=0$ by regularity of s and therefore $\frac{g}{f^{l}}=0$.
Proposition 4.1.3 The choice of trivializing cover in definition 4.1.1 is irrelevant.
Proof By lemma 4.1.2.
From a line bundle together with a regular section, we can produce a closed subtype of a special kind:
Definition 4.1.4 Let X be a scheme. A regular closed subtype of X is a closed subtype $C: X \rightarrow$ Prop, such that there merely is an affine open cover $U_{1}=\operatorname{Spec} A_{1}, \ldots, U_{n}=\operatorname{Spec} A_{n}$, and $C \cap U_{i}$ is $V\left(f_{i}\right)$ for a regular $f_{i}: A_{i}$.

Lemma 4.1.5 Let $f, g: A, f$ be regular and $V(f)=V(g)$, then g is regular and there is a unique unit $\alpha: A^{\times}$, such that $\alpha f=g$.

Proof $V(f)=V(g)$ implies there are $\alpha, \beta: A$ such that $\alpha f=g$ and $\beta g=f$. But then: $f=\beta g=\beta \alpha f$. So by regularity of $f, \beta \alpha=1$. By ??, units are regular and products of regular elements are regular, so g is regular. Uniqueness of α follows from regularity.

Theorem 4.1.6 (using ??)
Let X be a scheme. For any regular closed subscheme C, there is a line bundle with regular section (\mathcal{L}, s) on X, such that $C=V(s)$.

Proof Let $U_{1}=\operatorname{Spec} A_{1}, \ldots, U_{n}=\operatorname{Spec} A_{n}$ be a cover by standard affine opens such that we have regular f_{i} with $C \cap U_{i}=V\left(f_{i}\right)$. We define \mathcal{L} to be the trivial line bundle $\quad \mapsto R$ on each U_{i} and by giving automorphisms on the intersections $U_{i} \cap U_{j}: \equiv U_{i j}=\operatorname{Spec} A_{i j}$. On $U_{i j}, C$ is given by $V\left(\frac{f_{i}}{1}\right)$ and $V\left(\frac{f_{j}}{1}\right)$ which are both regular. Therefore, there is a unit $\alpha: A_{i j}^{\times}$such that $\alpha \frac{f_{i}}{1}=\frac{f_{j}}{1}$, which we can also view as a map $U_{i j} \rightarrow R^{\times}$and since R^{\times}is equivalent to the automorphism group of R as an R-module, this provides the identetification we need to construct \mathcal{L}. Under the identification, the local regular sections are identified, so we get a global section s of \mathcal{L}, which is locally regular.

5 Segre Embedding

Maybe this should be moved to the draft on proper schemes. This section just repeats classical knowledge which happens to work synthetically.

Definition 5.0.1 (a) A projective scheme is type X such that there is a closed subset of some \mathbb{P}^{n} equivalent to X.
(b) A quasi-projective scheme is type X such that there is an open subset of a closed subset of some \mathbb{P}^{n} equivalent to X.

We write $[x]$ for the point in \mathbb{P}^{n} given by a vector $x: R^{n+1}$.
Definition 5.0.2 The Segre-Embedding is the map $s: \mathbb{P}^{s} \times \mathbb{P}^{t} \rightarrow \mathbb{P}^{s \cdot t}$ given by

$$
\left(\left[x_{0}: \cdots: x_{s}\right],\left[y_{0}: \cdots: y_{t}\right]\right) \mapsto\left[\left(x_{i} \cdot y_{j}\right)_{i, j}\right]
$$

Proposition 5.0.3 The Segre-Embedding is a closed embedding.
Proof First, let $[x],\left[x^{\prime}\right]: \mathbb{P}^{s}$ and $[y],\left[y^{\prime}\right]: \mathbb{P}^{t}$ such that there is a $\lambda: R^{\times}$with $x_{i} y_{j}=\lambda x_{i}^{\prime} y_{j}^{\prime}$ for all i, j. There is a $l, k i$ such that $x_{l} \neq 0$ and $y_{k} \neq 0$. By the condition above, this implies $x_{l}^{\prime} \neq 0$ and $y_{k}^{\prime} \neq 0$. Then we have

$$
x_{i}=\lambda \cdot \frac{x_{i}^{\prime} y_{k}^{\prime}}{y_{k}}=\frac{x_{l} y_{k}}{x_{l}^{\prime} y_{k}^{\prime}} \cdot \frac{x_{i}^{\prime} y_{k}^{\prime}}{y_{k}}=\frac{x_{l}}{x_{l}^{\prime}} \cdot x_{i}^{\prime} .
$$

This shows the Segre-Embedding is an embedding.
A point $[z]: \mathbb{P}^{s \cdot t}$ is in the image of the Segre-Embedding, if and only if the equation $z_{i j} \cdot z_{k l}=z_{i l} \cdot z_{k j}$ holds: We have an invertible $z_{i j}$ and can define $x_{l}: \equiv z_{l j} \cdot z_{i j}^{-1}$ and $y_{k}: \equiv z_{i k} \cdot z_{i j}^{-1}$. Then $x_{l} \cdot y_{k}=$ $z_{l j} \cdot z_{i j}^{-1} \cdot z_{i k} \cdot z_{i j}^{-1}=z_{l k} \cdot z_{i j}^{-1}$, which shows that $\left[\left(z_{l k} \cdot z_{i j}^{-1}\right)_{l k}\right]$ is in the image of the Segre-Embedding and therefore [z].

Theorem 5.0.4
The type of (quasi-)projective schemes is closed under products of schemes.

6 Blow-up of Projective Space

(This does not correspond to the usual Blow-up and should be thought of as a blow-up of a system of equations.)

Definition 6.0.1 Let $V=V\left(P_{1}, \ldots, P_{l}\right) \subseteq \mathbb{P}^{n}$ be a closed subset given by homogenous polynomials P_{1}, \ldots, P_{l} of the same degree. Then the closed subset given by

$$
\begin{aligned}
& \mathrm{Bl}_{V}: \mathbb{P}^{n} \times \mathbb{P}^{l-1} \rightarrow \text { Prop } \\
& \quad([x],[y]) \mapsto \bigwedge_{i, j}\left(P_{i}(x) \cdot y_{j}=P_{j}(x) \cdot y_{i}\right)
\end{aligned}
$$

is called the blow-up of \mathbb{P}^{n} at V. There is a projection $\pi_{V}: \mathrm{Bl}_{V} \rightarrow \mathbb{P}^{n}$.
Proposition 6.0.2 Let $V=V\left(P_{1}, \ldots, P_{l}\right) \subseteq \mathbb{P}^{n}$ be a closed subset given by homogenous polynomials P_{1}, \ldots, P_{l} of the same degree.
(a) Bl_{V} is a projective scheme.
(b) For $U: \equiv D\left(P_{1}, \ldots, P_{l}\right)$ we have $\pi_{V}^{-1}(U)=U$.

Proof (a) By Segre-Embedding.
(b) By definition of Bl_{V}, the vectors y and $\left(P_{1}(x), \ldots, P_{l}(x)\right)$ are linearly dependent. So $[x]: \mathbb{P}^{n}$ is in U if and only if $\left(P_{1}(x), \ldots, P_{l}(x)\right)$ has an invertible entry. But in that case, $[y]$ is uniquely determined, so the corestriction of π_{V} to U is an equivalence.

Definition 6.0.3 Let $V=V\left(P_{1}, \ldots, P_{l}\right) \subseteq \mathbb{P}^{n}$ be a closed subset given by homogenous polynomials P_{1}, \ldots, P_{l} of the same degree. Then $\mathcal{L}_{v}([x],[y]): \equiv R\langle y\rangle$ defines a line bundle on Bl_{V}.

Proposition 6.0.4 In the same sitaution there is a pointwise at most rank 1 submodule $\mathcal{I}_{V} \subseteq \mathcal{L}_{V}$ on Bl_{V} such that $\mathcal{I}_{V, x} \neq 0$ implies $D\left(P_{1}, \ldots, P_{l}\right)\left(\pi_{V}(x)\right)$.

Proof (Sketch) $\mathcal{I}_{V, x}$ is generated by the vector $\left(P_{1}, \ldots, P_{l}\right)$.
This means that we transformed the quasi-projective U into an equivalent quasi-projective $\pi_{V}^{-1}(U) \subseteq$ Bl_{V} which is locally a standard-open.

7 External justification of axioms

This is an unfinished justification of the axioms of SAG, using Kripke-Joyal Semantics. This was once a part of [CCH23].

7.1 Justification of ??

Lemma 7.1.1 Let (C, J) be a site, where the Grothendieck topology J is subcanonical. Let

$$
f: E \rightarrow \mathrm{y}(c)
$$

be an epimorphism in $\operatorname{Sh}(C, J)$ with representable codomain. Then there is a J-cover $\left(c_{i} \rightarrow c\right)_{i \in I}$ of c such that for every i, the pullback of f along $\mathrm{y}\left(c_{i}\right) \rightarrow \mathrm{y}(c)$ is a split epimorphism.

Proof By the Yoneda lemma, an epimorphism $E \rightarrow \mathrm{y}(c)$ is split if and only if the particular element $\mathrm{id}_{c} \in$ $\mathrm{y}(c)(c)$ is in the image of the map $E(c) \rightarrow \mathrm{y}(c)(c)$. Applying the usual characterization of epimorphisms of sheaves [MM12, Corollary III.7.5] to the element $\operatorname{id}_{c} \in \mathrm{y}(c)(c)$ shows that there is a J-cover $\left(c_{i} \xrightarrow{g_{i}} c\right)_{i \in I}$ such that for every $i \in I$, there is some $e_{i} \in E\left(c_{i}\right)$ with $f_{c_{i}}\left(e_{i}\right)=g_{i} \in \mathrm{y}(c)\left(c_{i}\right)$. But this means that id $c_{c_{i}}$ is in the image of $\left(f_{i}\right)_{c_{i}}: E_{i}\left(c_{i}\right) \rightarrow \mathrm{y}\left(c_{i}\right)\left(c_{i}\right)$, as we can see by evaluating the pullback diagram at c_{i}. So f_{i} is a split epimorphism.

Let us formulate a version of the axiom ?? in infinitary first-order logic extended with unbounded quantification over objects/sorts $(\exists A . \varphi, \forall A . \varphi)$ and quantification over functions $(\exists f: A \rightarrow B . \varphi, \forall f:$ $A \rightarrow B . \varphi)$ as in Shulmans stack semantics [Shu10, Section 7].

We also use the syntax $\{x: A \mid \varphi(x)\}$ for bounded set comprehension, but this can be translated away. TODO

$$
\begin{aligned}
\varphi_{0} & : \equiv \bigwedge_{n, m \in \mathbb{N}} \forall r_{1}, \ldots, r_{m}: R\left[X_{1}, \ldots, X_{n}\right] \cdot \varphi_{1} \\
\operatorname{Spec} A & : \equiv\left\{x: R^{n} \mid \operatorname{ev}\left(r_{1}, x\right)=\cdots=\operatorname{ev}\left(r_{1}, x\right)=0\right\} \\
\varphi_{1} & : \nexists E \cdot \forall \pi: E \rightarrow \operatorname{Spec} A \cdot\left((\forall x: \operatorname{Spec} A \cdot \exists e: E \cdot \pi(e)=x) \Rightarrow \varphi_{2}\right) \\
\varphi_{2} & : \equiv \bigvee_{k \in \mathbb{N}} \exists f_{1}, \ldots, f_{k}: R\left[X_{1}, \ldots, X_{n}\right] \cdot f_{1}+\cdots+f_{k}=1 \wedge \varphi_{3} \\
D\left(f_{i}\right) & : \equiv\left\{x: \operatorname{Spec} A \mid \exists y \cdot \operatorname{ev}\left(f_{i}, x\right) y=1\right\} \\
\varphi_{3} & : \equiv \bigwedge_{i=1}^{k} \exists s: D\left(f_{i}\right) \rightarrow E \cdot \forall x: D\left(f_{i}\right) \cdot \pi(s(x))=x
\end{aligned}
$$

8 Group schemes are not smooth

The first example is very classical, we just give it because it is interesting.
Lemma 8.0.1 Assume $2=0$. Then the sub-group:

$$
\mu_{2}=\operatorname{Spec}\left(R[X] / X^{2}-1\right) \subset \mathbb{A}^{\times}
$$

is not smooth.
Proof Since $2=0$, for all $x: R$ we have $x^{2}=1 \mathrm{iff}\left(X^{2}-1\right)$. So as a scheme we have:

$$
\mu_{2}=\operatorname{Spec}\left(R[X] /(X-1)^{2}\right)=\operatorname{Spec}\left(R[X] / X^{2}\right)=\mathbb{D}(1)
$$

which is not smooth.
Proposition 8.0.2 Not all group schemes are smooth (without any assumption on the characteristic).
Proof For any closed proposition P consider the closed subgroup:

$$
1+P \subset \mathbb{Z} / 2 \mathbb{Z}
$$

sending 1 to the the unit 0 and P to 1 . If the group is smooth then so is P, which would then be decidable.

9 Hilbert's Nullstellensatz

In this section we prove that the Jacobson radical of any f.p. algebra A is equal to its nilradical. The idea for this result as well as the proof for $A=R$ was given to me (Hugo Moeneclaey) by Max Zeuner.

Definition 9.0.1 Let A be an R-algebra, then we define the nilradical $\operatorname{Nil}(A)$ of A as the ideal of nilpotents in A.

Definition 9.0.2 Let A be an R-algebra, then we define the Jacobson radical $\operatorname{Jac}(A)$ of A as the ideal of $a: A$ such that forall $b: A$ we have $1-b a$ invertible.

Classically, I think this is equivalent to the intersection of all maximal ideal.
Lemma 9.0.3 For any R-algebra A we have:

$$
\operatorname{Nil}(A) \subset \operatorname{Jac}(A)
$$

Proof Because $1+x$ is invertible for x nilpotent.

Lemma 9.0.4 We have:

$$
\operatorname{Nil}(R)=\operatorname{Jac}(R)
$$

Proof We have that:

$$
\begin{gathered}
\forall(y: R) .1-x y \text { inv } \\
\Leftrightarrow \forall(y: R) . \neg(x y=1) \\
\Leftrightarrow \neg(\exists y: R \cdot x y=1) \\
\Leftrightarrow \neg \neg(x=0) \\
\Leftrightarrow x \text { nil }
\end{gathered}
$$

Proposition 9.0.5 For any f.p. algebra A, we have that:

$$
\operatorname{Nil}(A)=\operatorname{Jac}(A)
$$

Proof Assume $a: A$. We have that a is nilpotent if and only if:

$$
\forall(x: \operatorname{Spec}(A)) \cdot a(x) \operatorname{nil}
$$

Now by lemma 9.0.4 this is equivalent to:

$$
\forall(x: \operatorname{Spec}(A))(y: R) .1-a(x) y \operatorname{inv}
$$

Which by considering b to be the constant map with value y, is equivalent to:

$$
\forall(b: A)(x: \operatorname{Spec}(A)) .1-a(x) b(x) \text { inv }
$$

which is the equivalent to:

$$
\forall(b: A) .1-a b \text { inv }
$$

10 Automorphisms of projective space

The following should be one part of showing that autormorphisms of \mathbb{P}^{n} are given by $\mathrm{PGL}_{n+1}(R)$.

Theorem 10.0.1

Let $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ be an arbitrary map. Suppose f is not not in $\mathrm{PGL}_{n+1}(R)$. Then f is in $\mathrm{PGL}_{n+1}(R)$.
Proof First note that f sends any $n+1$ points in general position to $n+1$ points in general position. This is because to be in general position means that a determinant is invertible, which is a negative property, and any map in PGL preserves the property of being in general position.

Let e_{i} be the point of \mathbb{P}^{n} with zeroes in all coordinates except the i th. Since e_{0}, \cdots, e_{n} are in general position, so are $f\left(e_{0}\right), \cdots, f\left(e_{n}\right)$. Thus we can find $f^{\prime} \in$ PGL with $f^{\prime}\left(e_{i}\right)=f\left(e_{i}\right)$. Replacing f by $f^{\prime-1} \circ f$, we may assume that $f\left(e_{i}\right)=e_{i}$. Now if f is in PGL, it must be given by a diagonal matrix, so f is not not given by a diagonal matrix.

Write $U_{i} \subseteq \mathbb{P}^{n}$ for the standard affine patch of \mathbb{P}^{n} consisting of points whose i th coordinate is invertible. We have that $f\left(U_{i}\right) \subseteq U_{i}$, since to be in U_{i} is a negative property and this containment holds if f is given by a diagonal matrix. Now f restricts to a map $U_{i} \rightarrow U_{i}$ which by SQC is given by $n+1$ polynomials in n variables. Homogenising these polynomials, we see that for $x=\left[X_{0}: \cdots: X_{n}\right] \in U_{i}, f(x)$ is given by polynomials $p_{i 0}, \cdots, p_{i n} \in R\left[X_{0}, \cdots, X_{n}\right]$ homogeneous of some degree d_{i}, so that $f(x)=\left[p_{i 0}: \cdots: p_{i n}\right]$, where $p_{i i}=X_{i}^{d_{i}}$.

Since $f\left(e_{i}\right)=e_{i}$, we have that the coefficient of $X_{i}^{d_{i}}$ in $p_{i j}$ is zero for $i \neq j$. We also have that the coefficient of $X_{i}^{d_{i}-1} X_{j}$ in $p_{i j}$ is invertible, since this holds when f is given by a diagonal matrix (in this case the coefficient is the ratio of diagonal entries). We also know that $p_{i j} p_{k l}=p_{i l} p_{k j}$ for all i, j, k, l since the descriptions of f on all the patches match up.

We claim that $p_{i j}$ is a unit multiple of $X_{i}^{d_{i}-1} X_{j}$. To this end, we claim that $p_{i j}$ is a sum of monomials which contain neither X_{j}^{2} nor X_{k} for $k \neq i, k \neq j$. We prove both of these claims separately but using the same idea. The idea is that of fixing a monomial ordering, and using the fact that if g, h are monomials with g 'pseudomonic' in the sense that g has invertible leading coefficient, then any bound on the degree of $g h$ gives a bound on the degree of h. We may assume $i \neq j$ in either case.

1. X_{j}^{2} : consider the equation $p_{i j} p_{j i}=X_{i}^{d_{i}} X_{j}^{d_{j}}$. Consider some monomial ordering which is lexicographic first on the degree of X_{j} and then on X_{i}. Here $p_{j i}$ is pseudomonic of degree $X_{j}^{d_{j}-1} X_{i}$. Thus $p_{i j}$ has degree at most $X_{j} X_{i}^{d_{i}-1}$ (and indeed that coefficient is assumed invertible). So X_{j}^{2} cannot appear in $p_{i j}$.
2. X_{k} where $k \neq i, k \neq j$: consider the equation $p_{i j} p_{j k}=p_{i k} X_{j}^{d_{j}}$. Consider some monomial ordering which is lexicographic first on the degree of X_{k} and then on X_{j}. By the above, $p_{j k}$ is pseudomonic of degree $X_{j}^{d_{j}-1} X_{k}$, and the degree of $p_{i k}$ is at most $X_{k} X_{j}^{d_{i}-1}$. Thus the degree of $p_{i j}$ is at most $X_{k} X_{j}^{d_{i}-1} X_{j}^{d_{j}} /\left(X_{j}^{d_{j}-1} X_{k}\right)=X_{j}^{d_{i}}$. Thus X_{k} cannot appear.
Given that $p_{i j}$ is a unit multiple of $X_{i}^{d_{i}-1} X_{j}$, it is direct that f is given by a diagonal matrix. This finishes the proof.

11 Projective module and vector bundle

In this section we prove the that for any f.p. algebra A we have an equivalence between vector bundles over $\operatorname{Spec}(A)$ and f.g. projective A-module.

Lemma 11.0.1 Assume given a f.p. algebra A and B a flat A-algebra, with A-modules M, N such that M is finitely presented. Then we have that:

$$
\operatorname{Hom}_{A}(M, N) \otimes_{A} B=\operatorname{Hom}_{B}\left(M \otimes_{A} B, N \otimes_{A} B\right)
$$

Proof Assume we have an exact sequence:

$$
A^{m} \rightarrow A^{n} \rightarrow M \rightarrow 0
$$

so by applying $\operatorname{Hom}_{A}(-, N)$ we get an exact sequence:

$$
0 \rightarrow \operatorname{Hom}_{A}(M, N) \rightarrow N^{n} \rightarrow N^{m}
$$

Then by applying $-\otimes_{A} B$ to the first sequence we have an exact sequence:

$$
B^{m} \rightarrow B^{n} \rightarrow M \otimes_{A} B \rightarrow 0
$$

and then by applying $\operatorname{Hom}_{B}\left(-, N \otimes_{A} B\right)$ we get an exact sequence:

$$
0 \rightarrow \operatorname{Hom}_{B}\left(M \otimes_{A} B, N \otimes_{A} B\right) \rightarrow\left(N \otimes_{A} B\right)^{n} \rightarrow\left(N \otimes_{A} B\right)^{m}
$$

Finally using B flat and applying $-\otimes_{A} B$ to the second sequence, we get an exact sequence:

$$
0 \rightarrow \operatorname{Hom}_{A}(M, N) \otimes_{A} B \rightarrow N^{n} \otimes_{A} B \rightarrow N^{m} \otimes_{A} B
$$

From this we can conclude.
Proposition 11.0.2 Let A be a f.p. algebra, then the equivalence:

$$
\{\text { bundles of f.p. modules over } \operatorname{Spec}(A)\} \simeq\{\text { f.p. } A-\text { modules }\}
$$

restricts to an equivalence:

$$
\{\text { vector bundles over } \operatorname{Spec}(A)\} \simeq\{\text { f.p. projective } A-\text { modules }\}
$$

Moreover any finitely generated projective A-module is in fact finitely presented.
Proof Let M be a finitely generated projective A-module. For any $x: \operatorname{Spec}(A)$, we write:

$$
M_{x}:=R \otimes_{A} M
$$

Then we can check that for any $x: \operatorname{Spec}(A)$ we have that M_{x} is projective and finitely generated, therefore M_{x} is finite free since R is local. So $x \mapsto M_{x}$ indeed gives a vector bundle.

Conversely let $x \mapsto M_{x}$ be a vector bundle over $\operatorname{Spec}(A)$, let us write:

$$
M:=\prod_{x: \operatorname{Spec}(A)} M_{x}
$$

We already know that M is finitely presented.
Since the M_{x} are free, we know that the exists a finite cover of $\operatorname{Spec}(A)$ by $D\left(f_{i}\right)$ such that for all i we have that $M_{f_{i}}$ is a free $A_{f_{i}}$-module.

Let us prove that the map of A-module:

$$
\operatorname{Hom}_{A}\left(M, A^{n}\right) \rightarrow \operatorname{Hom}_{A}(M, M)
$$

is surjective. To do this it is enough to prove that the induced map:

$$
\left(\operatorname{Hom}_{A}\left(M, A^{n}\right)\right)_{f_{i}} \rightarrow\left(\operatorname{Hom}_{A}(M, M)\right)_{f_{i}}
$$

is surjective for all i. But by lemma 11.0 .1 we have that this map is isomorphic to:

$$
\operatorname{Hom}_{A_{f_{i}}}\left(M_{f_{i}}, A_{f_{i}}^{n}\right) \rightarrow \operatorname{Hom}_{A_{f_{i}}}\left(M_{f_{i}}, M_{f_{i}}\right)
$$

Since $M_{f_{i}}$ is a free $A_{f_{i}}$-module, we know that the surjection:

$$
A_{f_{i}}^{n} \rightarrow M_{f_{i}}
$$

is split, therefore the considered map is indeed surjective.
From the fact that the map:

$$
\operatorname{Hom}_{A}\left(M, A^{n}\right) \rightarrow \operatorname{Hom}_{A}(M, M)
$$

is surjective we conclude that M is a direct summand of A^{n}, and therefore it is indeed projective.

12 Overtness

A type X is overt iff X-indexed sums preserve openness, that is iff for every open $U \subseteq X$ the proposition " U is inhabited" is open again. The following proposition emerged at the 2024 Dagstuhl meeting, prompted by and jointly with Andrej Bauer and Martín Escardó:

Proposition 12.0.1 The following statements are equivalent.

1. The ring R is overt.
2. For every polynomial $f: R[X]$, the proposition that f has an anti-zero (a number x such that $f(x) \neq$ $0)$ is open.
3. The ring R is infinite in the sense that for every natural number n, there are n pairwise distinct elements of R.
4. The ring R is infinite in the sense that for every finite list x_{1}, \ldots, x_{n} of elements of R, there is an element y distinct from all of the x_{i}.

Proof Statement 2 is just the special instance of Statement 1 for the case $U=D(f)$. Conversely, Statement 1 follows from Statement 2 because an arbitrary open of R is of the form $\bigcup_{i=1}^{n} D\left(f_{i}\right)$ and because finite disjunctions of open propositions are open. Trivially, Statement 4 implies Statement 3.

To verify that Statement 3 implies Statement 2, let $f: R[X]$ be a polynomial. By definition, there is an upper bound n of the formal degree of f. By assumption, there are $n+1$ pairwise distinct numbers r_{0}, \ldots, r_{n}. Then the statement that f has an antizero is equivalent to the finite disjunction $\bigvee_{i=0}^{n}\left(f\left(r_{i}\right) \neq 0\right)$: The "if" direction is trivial, and for the "only if" direction, assume to the contrary that $f\left(r_{0}\right)=\ldots=f\left(r_{n}\right)=0$. Then f can be factored as $f(X)=\left(X-r_{1}\right) \cdots\left(X-r_{n}\right) \cdot c$. Because $f\left(r_{0}\right)=0$, we have $c=0$ and hence $f=0$. This is a contradiction to f admitting an antizero.

To verify that Statement 2 implies Statement 4, let numbers x_{1}, \ldots, x_{n} of R be given. Up to double negation, the monic polynomial $\left(X-x_{1}\right) \cdots\left(X-x_{n}\right)+1$ has a zero. Hence up to double negation, the polynomial $f(X)=\left(X-x_{1}\right) \cdots\left(X-x_{n}\right)$ has an antizero. By assumption, this statement is open and therefore double negation stable, hence f actually has an antizero.

Remark 12.0.2 The equivalent conditions of Proposition 12.0.1 are satisfied in case the external base ring k contains, for every natural number n, elements x_{1}, \ldots, x_{n} whose pairwise differences are invertible.

Proposition 12.0.3 If R is overt, then every open neighborhood of 0 in R is infinite in the sense that for every finite list x_{1}, \ldots, x_{n} of elements, there is an element y distinct from all the x_{i}.

Proof Let $U \subseteq R$ be an open neighborhood of 0 . Then there is a polynomial $f: R[X]$ such that $0 \in$ $D(f) \subseteq U$. Let x_{1}, \ldots, x_{n} be elements of U. Up to double negation, the polynomial $\left(X-x_{1}\right) \cdots(X-$ $\left.x_{n}\right) \cdot X \cdot f+1$ has a zero. Such a zero is an element y which is distinct from all the x_{i} (and from 0). So up to double negation, the polynomial $\left(X-x_{1}\right) \cdots\left(X-x_{n}\right) \cdot X \cdot f$ has an antizero. Because R is overt, the existence of an antizero is (open and hence) double negation stable so that we can conclude that there actually is an antizero.

Index

$\mathrm{Bl}_{V}, 6$
blow-up, 6
generic section, 4
projective scheme, 5
pullback, 1
quasi-projective scheme, 5
regular, 4
regular closed subtype, 4
Segre-Embedding, 5

References

[CCH23] Felix Cherubini, Thierry Coquand, and Matthias Hutzler. A Foundation for Synthetic Algebraic Geometry. 2023. arXiv: 2307.00073 [math.AG]. URL: https://www.felix-cherubini. de/iag.pdf (cit. on p. 6).
[MM12] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to topos theory. Springer, 2012 (cit. on p. 6).
[Shu10] Michael A. Shulman. "Stack semantics and the comparison of material and structural set theories". In: arXiv e-prints, arXiv:2205.15887 (2010) (cit. on p. 7).

[^0]: ${ }^{1}$ That means there merely are $i, j: \mathbb{Z}$ such that $u_{n}=0$ if $n<i$ or $n>j$.

