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Abstract

The following is a collection of results in synthetic algebraic geometry, that didn’t find a place
anywhere else so far.
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1 Translations of Classical Proofs

This is a proof that pullbacks of schemes are schemes, which is analogous to what could be found in a
textbook.

Theorem 1.0.1 (using ?7?, 7?7, 77)
Let

x -tz 0y
be schemes, then the pullback X xz Y is also a scheme.

Proof (alternative proof of theorem 1.0.1) Let Wy,..., W, be a finite affine cover of Z. The preim-
ages of W; under f and g are open and covered by fintely many affine open U, and Vj; by ?7. This leads
to the following diagram:



where the front and bottom square are pullbacks by definition. By pullback-pasting, the top is also a
pullback, so all diagonal maps are embeddings.

P;; is open, since it is a preimage of V;; (??), which is open in Y by ??. It remains to show, that the
P;j cover X xzY and that P;; is a scheme. Let x : X Xz Y. For the image w of x in W, there merely is
an ¢ such that w is in W;. The image of = in V; merely lies in some V;;, so x is in F;;.

We proceed by showing that F;; is a scheme. Let U;; be a part of the finite affine cover of U;. We
repeat part of what we just did:

P;; \ Ui \
Piji ‘ Usix
Vij \ W; \
Vij Wi
So by 7?, P;;i is affine. Repetition of the above shows, that the P;;; are open and cover P;;. O

2 Homogeneity

Definition 2.0.1 A graded R-algebra S is an R-algebra S together with the datum of a direct sum
decomposition

S = @nEZSn
as an R-module such that Sy - Sy C Sk for every k, £ € Z. We identify each S, for n € Z with its image
in S. The elements of S,, are called homogeneous of degree n.

Remark 2.0.2 The datum of a grading of an R-algebra S thus gives us an essentially finite decom-
position® u = > nez Un for every u € S where each u, is homogeneous of degree n. Furthermore, the
decomposition of a homogeneous element u is just u = u.

Proposition 2.0.3 Let S be a graded R-algebra and let X := Spec S. For each t € R* and each p € X

we define
t-p:= (u > Zp(un)t”> € Spec S.

nez
This defines an operation of the multiplicative group R* on X.

Proof That 1-p = p for every p € X follows from p(u) = > ., p(u,) - 1". That r- (r'-p) = (r-7') - p
follows from the homogeneity of every w,. |

Theorem 2.0.4
The construction in proposition 2.0.3 yields an identification between the type of graded R-algebras and
the type of affine schemes together with an action of the multiplicative group R*.

1That means there merely are 4, j : Z such that u, =0 if n < i or n > j.



Proof We give the converse construction. Let X = Spec S be an affine scheme together with the datum
R* x X — X of an action of the multiplicative group R*. By synthetic quasi-coherence, the function
R* x X — X yields a homomorphism

a(t): S = Skt = S@ Rt urs Y unt”

nez

of R-algebras where the sum on the right hand side is essentially finite. That 1-p = p for all p € X is
equivalent to a(1) = idg, which, in turn, yields u = >, u,. That t- (¢’ -p) = (t-t') - p is equivalent to
(a(t) @ idpp,e-1)) 0 at’) = a(t - t'), from which «(t)(un) = unt™ follows. O

Remark 2.0.5 Let S be a graded R-algebra. The action of R* on Spec.S induces a natural action of
R* on the R-algebra of functions on Spec S given by

RSPecS 5 RX — RSPeCS (f 1) (p— f(t-p)).
Under the identification RSP¢® = § given by synthetic quasicoherence, this gives the action

SxR* =8, (u,t) — Zunt”
nez

of R* on the R-algebra S.

Example 2.0.6 Let V be a finitely presented R-module. The symmetric algebra Sym*V of V over R is
naturally graded. In particular, the affine scheme

VY = Spec Sym*V
carries a natural action by the multiplicative group R*.
Remark 2.0.7 We write VV as
Spec Sym*V = Homp. a1, (Sym*V, R) = Hompg mod(V, R)

by the universal property of Sym*V. In particular, V'V carries the structure of a (finitely copresented)
R-module. Moreover, the natural action of R* on the left hand side corresponds to scalar multiplication
on the right hand side.
From the above, we can deduce that V is reflexive:

Theorem 2.0.8
Let V be a finitely presented R-module. Set

V\/v = HOmR_MOd(V\/, R)
The natural map

Vo VY fe (= p(f)
is an isomorphism of R-modules. In particular, V is reflexive and the dual of every finitely copresented
R-module (which is always the dual of a finitely presented R-module) is finitely presented.
Proof The identification

Sym*V — RSpecSym’V — pV*

is an identity of R-algebras with an R*-action. In particular, the homogeneous elements of degree 1 on
the left hand side correspond to the homogeneous elements of degree 1 on the right hand side. This yields
an isomorphism

¢: V — Hompx (VY R) ={u: VY = R |Vt € R*Vv € V: u(vt) = u(v)t},v — (p p(v))

of R-modules. As the image of ¢ lies inside VYV C Hompgx (VV, R) we actually have VYV = Hompgx (VV, R)
and the theorem is proven. (]

Remark 2.0.9 It follows from the above that for a finitely copresented R-module V'V, a (1-)homogenous
map VV — R is already R-linear (principle of microlinearity).



3 Serre’s affineness theorem

Ingo Blechschmidt and David Warn proved the following analogue of Serre’s theorem on affineness

Theorem 3.0.1
Let X be a scheme such that H*(X,I) =0, for all I : X — R-Modyqc, then X is affine.

Here is a consequence:

Corollary 3.0.2 Let X be an affine scheme and Y : X — Schyc, such that each Y, is affine. Then
(x: X) x Y, is affine.

Proof Let M : (z: X) x Y, — R-Modyqc. Then (explanations for the steps below):

H'((z: X) x Y, M) = |(z,y2) : (x: X) x Yy) = K(Mzy.),1))][set
=z : X) = (2 : Ya) = K(M(z,y,),1))llset
=(z: X) = K((yx : Ya) = M.y, 1) lset
=0 O
The first step, after expanding the definition, is just currying. To commute the Eilenberg-MacLane space
with the dependent function type, we use that Y is affine and therefore the type (y, : Yz) — K (M4 .y, 1)
is connected. It is a delooping of (y, : Y;) — M(g,,), so by connectedness, it must be equivalent to

K((ye : Yz) = M(3,4,),1). The last step uses that X is affine, and (y, : Yz) = M., as a scheme-
indexed product of weakly quasi-coherent modules, is again weakly quasi-coherent.

4 Line bundles and divisors

4.1 Regular sections and regular closed subschemes

In classical algebraic geometry, there is the concept of a generic section of a line bundle. Informally,
the generic sections have the smallest possible vanishing set. The following definition corresponds to this
notion:

Definition 4.1.1 Let X be a type and £ : X — R-Mod a line bundle. A section
S H L,
x: X

is reqular, there merely is a trivializing affine cover U; = Spec Ay, ..., U, = Spec A4,, of L, such that each
trivialized restriction
s; :SpecA; &> R

is a regular element (?7?) of (Spec A; — R) = A;.

Lemma 4.1.2 Let s: Spec A — R. s being regular is Zariski-local, i.e. for all Zariski-covers Uy, ..., U,
of Spec A, s is regular, if and only if it is regular on all U;.

Proof It is enough to check this for a localization at f : A. Let

$.9
1 fk
then f'sg = 0, which implies f'g = 0 by regularity of s and therefore #=0. O

Proposition 4.1.3 The choice of trivializing cover in definition 4.1.1 is irrelevant.
Proof By lemma 4.1.2. O

From a line bundle together with a regular section, we can produce a closed subtype of a special kind:

Definition 4.1.4 Let X be a scheme. A regular closed subtype of X is a closed subtype C' : X — Prop,
such that there merely is an affine open cover U; = Spec A4,...,U, = Spec A,,, and C NU; is V(f;) for
a regular f; : A;.



Lemma 4.1.5 Let f,g: A, f be regular and V(f) = V(g), then g is regular and there is a unique unit
a: A*, such that af = g.

Proof V(f) = V(g) implies there are «, 3 : A such that af = g and 8g = f. But then: f = 8g = Saf.
So by regularity of f, Sa = 1. By 77, units are regular and products of regular elements are regular, so
g is regular. Uniqueness of « follows from regularity. O

Theorem 4.1.6 (using ?7)
Let X be a scheme. For any regular closed subscheme C, there is a line bundle with regular section (L, s)
on X, such that C' =V (s).

Proof Let U; = SpecAy,...,U, = Spec A, be a cover by standard affine opens such that we have
regular f; with CNU; = V(f;). We define L to be the trivial line bundle _+— R on each U; and by giving
automorphisms on the intersections U; N U; = U;; = Spec 4;;. On U,;, C is given by V(%) and V(fTJ)
which are both regular. Therefore, there is a unit « : Aixj such that a% = %, which we can also view
as a map U;; — R* and since R* is equivalent to the automorphism group of R as an R-module, this
provides the identetification we need to construct £. Under the identification, the local regular sections
are identified, so we get a global section s of £, which is locally regular. O

5 Segre Embedding

Maybe this should be moved to the draft on proper schemes. This section just repeats classical knowledge
which happens to work synthetically.

Definition 5.0.1 (a) A projective scheme is type X such that there is a closed subset of some P"
equivalent to X.

(b) A quasi-projective scheme is type X such that there is an open subset of a closed subset of some
P™ equivalent to X.

We write [x] for the point in P™ given by a vector z : R"*1.

Definition 5.0.2 The Segre-Embedding is the map s : P x Pt — P*'t given by

([wo: - xs],[yo -+ wel) V= [(w6 - )i 4]

Proposition 5.0.3 The Segre-Embedding is a closed embedding.

Proof First, let [z], [2/] : P* and [y], [y'] : P* such that there is a A : R* with z;y; = A\zjy} for all 4, .
There is a [, ki such that z; # 0 and y, # 0. By the condition above, this implies z; # 0 and y;, # 0.
Then we have
oo Y _ Tk Ty, _ @,
' Ye o TR Y o ox

This shows the Segre-Embedding is an embedding.

A point [2] : P*? is in the image of the Segre-Embedding, if and only if the equation z;; - 2z = 24 - 2k
holds: We have an invertible z;; and can define z; = z; - zigl and yp = zi - z;l Then z; - yp =
21 2y Rk zigl = 21k ~zi;1, which shows that [(z - zigl)lk] is in the image of the Segre-Embedding and
therefore [z]. O

Theorem 5.0.4
The type of (quasi-)projective schemes is closed under products of schemes.
6 Blow-up of Projective Space

(This does not correspond to the usual Blow-up and should be thought of as a blow-up of a system of
equations.)



Definition 6.0.1 Let V = V(Py,...,P) C P" be a closed subset given by homogenous polynomials
Py, ..., P of the same degree. Then the closed subset given by

Bly :P" x P! — Prop

([2], [y]) — /\(Pi(x) ;= Pi(@) - i)

is called the blow-up of P™ at V. There is a projection my : Bly — P™.

Proposition 6.0.2 Let V = V(Py,...,P;) C P" be a closed subset given by homogenous polynomials
P, ..., P of the same degree.
(a) Bly is a projective scheme.

(b) For U := D(Py,...,P,) we have m,' (U) = U.
Proof (a) By Segre-Embedding.

(b) By definition of Bly, the vectors y and (Py(z), ..., P;(z)) are linearly dependent. So [z] : P™ is in U
if and only if (P (z), ..., P,(z)) has an invertible entry. But in that case, [y] is uniquely determined,
so the corestriction of my to U is an equivalence. (]

Definition 6.0.3 Let V = V(Py,...,P,) C P™ be a closed subset given by homogenous polynomials
P, ..., P of the same degree. Then £, ([z], [y]) = R(y) defines a line bundle on Bly .

Proposition 6.0.4 In the same sitaution there is a pointwise at most rank 1 submodule Zy C Ly on
Bly such that Zy,, # 0 implies D(Pi, ..., B)(7y (x)).

Proof (Sketch) Zy, is generated by the vector (Py,...,P). O

This means that we transformed the quasi-projective U into an equivalent quasi-projective w;l(U ) C
Bly which is locally a standard-open.

7 External justification of axioms

This is an unfinished justification of the axioms of SAG, using Kripke-Joyal Semantics. This was once a
part of [CCH23].

7.1 Justification of 7?7

Lemma 7.1.1 Let (C,J) be a site, where the Grothendieck topology J is subcanonical. Let

fiE—y(c)

be an epimorphism in Sh(C,.J) with representable codomain. Then there is a J-cover (¢; — ¢);er of ¢
such that for every i, the pullback of f along y(¢;) — y(¢) is a split epimorphism.

E,——F

n -
' lfi lf

y(ei) —— y(¢)

Proof By the Yoneda lemma, an epimorphism E — y(c) is split if and only if the particular element id, €
y(c)(c) is in the image of the map E(c) — y(c)(¢). Applying the usual characterization of epimorphisms
of sheaves [MM12, Corollary II1.7.5] to the element id.. € y(c)(c) shows that there is a J-cover (¢; £ Cicr
such that for every ¢ € I, there is some e; € E(c¢;) with f.,(e;) = g; € y(c)(¢;). But this means that id,
is in the image of (fi),, : Ei(c;) = y(ci)(ci), as we can see by evaluating the pullback diagram at ¢;. So
fi is a split epimorphism. |



Let us formulate a version of the axiom ?7? in infinitary first-order logic extended with unbounded
quantification over objects/sorts (3A.p, VA.p) and quantification over functions (3f : A — B.p, Vf :
A — B.yp) as in Shulmans stack semantics [Shul0, Section 7].

We also use the syntax {z : A | ¢(x)} for bounded set comprehension, but this can be translated
away. TODO

vo= [\ Vri.....rm:RIXy,. . Xl
n,meN

SpecA ={z: R" |ev(ri,z) =--- =ev(ry,z) =0}
w1 =VE.Vr: E — SpecA. (Vz : Spec A. Je : E. ww(e) = ) = p2)

Y2 = \/Elf177fkR[X177Xn]fl++fk:1/\§03
keN

D(f;) = {x:SpecA|3Jy. ev(fi,x)y =1}

k
s = /\ 3s: D(f;) = E.Vz : D(f;). n(s(z)) =z

8 Group schemes are not smooth
The first example is very classical, we just give it because it is interesting.
Lemma 8.0.1 Assume 2 = 0. Then the sub-group:

o = Spec(R[X]/X? — 1) C A
is not smooth.
Proof Since 2 = 0, for all  : R we have 22 = 1 iff (X2 — 1). So as a scheme we have:

112 = Spec(RIX]/(X — 1)%) = Spec(R[X]/X2) = D(1)
which is not smooth. (]
Proposition 8.0.2 Not all group schemes are smooth (without any assumption on the characteristic).
Proof For any closed proposition P consider the closed subgroup:
1+ P CZ/2Z

sending 1 to the the unit 0 and P to 1. If the group is smooth then so is P, which would then be
decidable. |

9 Hilbert’s Nullstellensatz

In this section we prove that the Jacobson radical of any f.p. algebra A is equal to its nilradical. The
idea for this result as well as the proof for A = R was given to me (Hugo Moeneclaey) by Max Zeuner.

Definition 9.0.1 Let A be an R-algebra, then we define the nilradical Nil(A) of A as the ideal of
nilpotents in A.

Definition 9.0.2 Let A be an R-algebra, then we define the Jacobson radical Jac(A) of A as the ideal
of a : A such that forall b: A we have 1 — ba invertible.

Classically, I think this is equivalent to the intersection of all maximal ideal.
Lemma 9.0.3 For any R-algebra A we have:
Nil(A) C Jac(A)

Proof Because 1 + z is invertible for x nilpotent. O



Lemma 9.0.4 We have:
Nil(R) = Jac(R)

Proof We have that:
Y(y: R). 1 —xy inv

< V(y:R). ~(zy=1)
< a(Fy: R oay=1)
& —=(z=0)

& x nil 0

Proposition 9.0.5 For any f.p. algebra A, we have that:
Nil(A) = Jac(A)

Proof Assume a: A. We have that a is nilpotent if and only if:

V(x : Spec(A)). a(x) nil
Now by lemma 9.0.4 this is equivalent to:

V(z : Spec(A))(y : R). 1 — a(z)y inv
Which by considering b to be the constant map with value y, is equivalent to:
V(b: A)(z : Spec(A)). 1 — a(x)b(x) inv

which is the equivalent to:
V(b:A).1—abinv O

10 Awutomorphisms of projective space

The following should be one part of showing that autormorphisms of P™ are given by PGL,,41(R).

Theorem 10.0.1
Let f:P™ — P™ be an arbitrary map. Suppose f is not not in PGL,11(R). Then f is in PGL,41(R).

Proof First note that f sends any n + 1 points in general position to n + 1 points in general position.
This is because to be in general position means that a determinant is invertible, which is a negative
property, and any map in PGL preserves the property of being in general position.

Let e; be the point of P™ with zeroes in all coordinates except the ith. Since eq,- - - , e, are in general
position, so are f(eg), - , f(en). Thus we can find f’ € PGL with f'(e;) = f(e;). Replacing f by f'~lof,
we may assume that f(e;) = e;. Now if f is in PGL, it must be given by a diagonal matrix, so f is not
not given by a diagonal matrix.

Write U; C P for the standard affine patch of P™ consisting of points whose ith coordinate is invertible.
We have that f(U;) C U, since to be in U; is a negative property and this containment holds if f is given
by a diagonal matrix. Now f restricts to a map U; — U; which by SQC is given by n + 1 polynomials in
n variables. Homogenising these polynomials, we see that for © = [Xo : -+ : X,,] € U, f(x) is given by
polynomials p;o, -, pin € R[Xo, - , X,] homogeneous of some degree d;, so that f(z) = [pio: - : Pin,
where p;; = Xid'i.

Since f(e;) = e;, we have that the coefficient of Xidi in p;; is zero for ¢ # j. We also have that the
coefficient of de'i_lX ;j in p;; is invertible, since this holds when f is given by a diagonal matrix (in this
case the coefficient is the ratio of diagonal entries). We also know that p;;pr = pups; for all ¢, 4, &k, since
the descriptions of f on all the patches match up.

We claim that p;; is a unit multiple of XlelXj. To this end, we claim that p;; is a sum of monomials
which contain neither X j2 nor Xy, for k # i, k # j. We prove both of these claims separately but using the
same idea. The idea is that of fixing a monomial ordering, and using the fact that if g, h are monomials
with ¢ ‘pseudomonic’ in the sense that ¢ has invertible leading coefficient, then any bound on the degree
of gh gives a bound on the degree of h. We may assume i # j in either case.



1. X j2 consider the equation p;;p;; = Xf'inj . Consider some monomial ordering which is lexico-
'x,.
Thus p;; has degree at most Xijli_l (and indeed that coefficient is assumed invertible). So X?
cannot appear in p;;.

graphic first on the degree of X; and then on X;. Here pj;; is pseudomonic of degree X;.ij_

2. X where k # ¢, k # j: consider the equation p;;p;i = pikX;ij. Consider some monomial ordering
which is lexicographic first on the degree of X, and then on X;. By the above, p;; is pseudomonic

of degree X;lj_le, and the degree of p;; is at most XkX;li_l. Thus the degree of p;; is at most
XkX;li_lij/(X;lj_le) = Xj’-i". Thus X}, cannot appear.
Given that p;; is a unit multiple of Xl-d"’*lX 4, it is direct that f is given by a diagonal matrix. This
finishes the proof. (]
11 Projective module and vector bundle

In this section we prove the that for any f.p. algebra A we have an equivalence between vector bundles
over Spec(A) and f.g. projective A-module.

Lemma 11.0.1 Assume given a f.p. algebra A and B a flat A-algebra, with A-modules M, N such that
M is finitely presented. Then we have that:

Homy (M, N) ®4 B =Homp(M ®4 B,N ®4 B)
Proof Assume we have an exact sequence:
A" - A" - M — 0
so by applying Hom 4(_, N) we get an exact sequence:
0 — Homs(M,N) - N" - N™
Then by applying - ® 4 B to the first sequence we have an exact sequence:
B™ - B" > M®asB—0

and then by applying Homp(_, N ® 4 B) we get an exact sequence:

0 — Homp(M ®4 B,N ®4 B) = (N ®4 B)" = (N®4 B)™
Finally using B flat and applying - ® 4 B to the second sequence, we get an exact sequence:

0 - Homs(M,N)®4 B—> N"®@4B— N"®4 B

From this we can conclude. O
Proposition 11.0.2 Let A be a f.p. algebra, then the equivalence:

{bundles of f.p. modules over Spec(A)} ~ {f.p. A — modules}
restricts to an equivalence:

{vector bundles over Spec(A)} ~ {f.p. projective A — modules}
Moreover any finitely generated projective A-module is in fact finitely presented.
Proof Let M be a finitely generated projective A-module. For any « : Spec(A), we write:

M, :=R®s M

Then we can check that for any z : Spec(A) we have that M, is projective and finitely generated, therefore
M, is finite free since R is local. So x — M, indeed gives a vector bundle.



Conversely let © — M, be a vector bundle over Spec(A), let us write:

M = H M,

z:Spec(A)

We already know that M is finitely presented.

Since the M, are free, we know that the exists a finite cover of Spec(A) by D(f;) such that for all ¢
we have that My, is a free Ag,-module.

Let us prove that the map of A-module:

Homy (M, A™) — Homy (M, M)
is surjective. To do this it is enough to prove that the induced map:
(Homu (M, A"))s, = (Homa (M, M))y,
is surjective for all . But by lemma 11.0.1 we have that this map is isomorphic to:
Homy,, (My,, A%,) — HomAfi(Mfi,Mfi)
Since My, is a free A¢,-module, we know that the surjection:
A — My,

is split, therefore the considered map is indeed surjective.
From the fact that the map:

Hom (M, A™) — Homyu (M, M)

is surjective we conclude that M is a direct summand of A", and therefore it is indeed projective. O

12 Overtness

A type X is overt iff X-indexed sums preserve openness, that is iff for every open U C X the proposi-
tion “U is inhabited” is open again. The following proposition emerged at the 2024 Dagstuhl meeting,
prompted by and jointly with Andrej Bauer and Martin Escardé:

Proposition 12.0.1 The following statements are equivalent.
1. The ring R is overt.

2. For every polynomial f : R[X], the proposition that f has an anti-zero (a number x such that f(x) #
0) is open.

3. The ring R is infinite in the sense that for every natural number n, there are n pairwise distinct
elements of R.

4. The ring R is infinite in the sense that for every finite list x4, ..., x, of elements of R, there is an
element y distinct from all of the x;.

Proof Statement 2 is just the special instance of Statement 1 for the case U = D(f). Conversely,
Statement 1 follows from Statement 2 because an arbitrary open of R is of the form |J]_, D(f;) and
because finite disjunctions of open propositions are open. Trivially, Statement 4 implies Statement 3.
To verify that Statement 3 implies Statement 2, let f : R[X] be a polynomial. By definition,
there is an upper bound n of the formal degree of f. By assumption, there are n 4+ 1 pairwise dis-

tinct numbers rq,...,r,. Then the statement that f has an antizero is equivalent to the finite dis-
junction \/7_,(f(r;) # 0): The “if” direction is trivial, and for the “only if” direction, assume to the
contrary that f(rg) = ... = f(r,) = 0. Then f can be factored as f(X) = (X —r1)--- (X —ry,) - c.

Because f(rg) = 0, we have ¢ = 0 and hence f = 0. This is a contradiction to f admitting an antizero.
To verify that Statement 2 implies Statement 4, let numbers 1, ..., x, of R be given. Up to double
negation, the monic polynomial (X — x;)--- (X — x,) + 1 has a zero. Hence up to double negation, the
polynomial f(X) = (X — z1)---(X — z,,) has an antizero. By assumption, this statement is open and
therefore double negation stable, hence f actually has an antizero. O

10



Remark 12.0.2 The equivalent conditions of Proposition 12.0.1 are satisfied in case the external base
ring k contains, for every natural number n, elements x1, ..., x, whose pairwise differences are invertible.

Proposition 12.0.3 If R is overt, then every open neighborhood of 0 in R is infinite in the sense that
for every finite list x4, ..., x, of elements, there is an element y distinct from all the x;.

Proof Let U C R be an open neighborhood of 0. Then there is a polynomial f : R[X] such that 0 €
D(f) CU. Let z1,...,z, be elements of U. Up to double negation, the polynomial (X — z1) - (X —
Zn)- X - f+1 has a zero. Such a zero is an element y which is distinct from all the z; (and from 0). So up
to double negation, the polynomial (X — ;) --- (X —x,) - X - f has an antizero. Because R is overt, the
existence of an antizero is (open and hence) double negation stable so that we can conclude that there
actually is an antizero. O

11
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