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Abstract

The following is a collection of results in synthetic algebraic geometry, that didn’t find a place
anywhere else so far.
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1 Translations of Classical Proofs

This is a proof that pullbacks of schemes are schemes, which is analogous to what could be found in a
textbook.

Theorem 1.0.1 (using ??, ??, ??)
Let

X Z Y
f g

be schemes, then the pullback X ×Z Y is also a scheme.

Proof (alternative proof of theorem 1.0.1) LetW1, . . . ,Wn be a finite affine cover of Z. The preim-
ages of Wi under f and g are open and covered by fintely many affine open Uik and Vij by ??. This leads
to the following diagram:
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X ×Z Y Y

Pij Vij

X Z

Ui Wi

where the front and bottom square are pullbacks by definition. By pullback-pasting, the top is also a
pullback, so all diagonal maps are embeddings.

Pij is open, since it is a preimage of Vij (??), which is open in Y by ??. It remains to show, that the
Pij cover X ×Z Y and that Pij is a scheme. Let x : X ×Z Y . For the image w of x in W , there merely is
an i such that w is in Wi. The image of x in Vi merely lies in some Vij , so x is in Pij .

We proceed by showing that Pij is a scheme. Let Uik be a part of the finite affine cover of Ui. We
repeat part of what we just did:

Pij Ui

Pijk Uik

Vij Wi

Vij Wi

So by ??, Pijk is affine. Repetition of the above shows, that the Pijk are open and cover Pij . □

2 Homogeneity

Definition 2.0.1 A graded R-algebra S is an R-algebra S together with the datum of a direct sum
decomposition

S = ⊕n∈ZSn

as an R-module such that Sk ·Sℓ ⊆ Sk+l for every k, ℓ ∈ Z. We identify each Sn for n ∈ Z with its image
in S. The elements of Sn are called homogeneous of degree n.

Remark 2.0.2 The datum of a grading of an R-algebra S thus gives us an essentially finite decom-
position1 u =

∑
n∈Z un for every u ∈ S where each un is homogeneous of degree n. Furthermore, the

decomposition of a homogeneous element u is just u = u.

Proposition 2.0.3 Let S be a graded R-algebra and let X := SpecS. For each t ∈ R× and each p ∈ X
we define

t · p :=

(
u 7→

∑
n∈Z

p(un)t
n

)
∈ SpecS.

This defines an operation of the multiplicative group R× on X.

Proof That 1 · p = p for every p ∈ X follows from p(u) =
∑

n∈Z p(un) · 1n. That r · (r′ · p) = (r · r′) · p
follows from the homogeneity of every un. □

Theorem 2.0.4
The construction in proposition 2.0.3 yields an identification between the type of graded R-algebras and
the type of affine schemes together with an action of the multiplicative group R×.

1That means there merely are i, j : Z such that un = 0 if n < i or n > j.
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Proof We give the converse construction. Let X = SpecS be an affine scheme together with the datum
R× × X → X of an action of the multiplicative group R×. By synthetic quasi-coherence, the function
R× ×X → X yields a homomorphism

α(t) : S → S[t, t−1] = S ⊗R[t, t−1], u 7→
∑
n∈Z

unt
n

of R-algebras where the sum on the right hand side is essentially finite. That 1 · p = p for all p ∈ X is
equivalent to α(1) = idS , which, in turn, yields u =

∑
n∈Z un. That t · (t′ · p) = (t · t′) · p is equivalent to

(α(t)⊗ idR[t,t−1]) ◦ α(t′) = α(t · t′), from which α(t)(un) = unt
n follows. □

Remark 2.0.5 Let S be a graded R-algebra. The action of R× on SpecS induces a natural action of
R× on the R-algebra of functions on SpecS given by

RSpecS ×R× → RSpecS , (f, t) 7→ (p 7→ f(t · p)).

Under the identification RSpecS = S given by synthetic quasicoherence, this gives the action

S ×R× → S, (u, t) 7→
∑
n∈Z

unt
n

of R× on the R-algebra S.

Example 2.0.6 Let V be a finitely presented R-module. The symmetric algebra Sym∗V of V over R is
naturally graded. In particular, the affine scheme

V ∨ := Spec Sym∗V

carries a natural action by the multiplicative group R×.

Remark 2.0.7 We write V ∨ as

Spec Sym∗V = HomR-Alg(Sym
∗V,R) = HomR-Mod(V,R)

by the universal property of Sym∗V . In particular, V ∨ carries the structure of a (finitely copresented)
R-module. Moreover, the natural action of R× on the left hand side corresponds to scalar multiplication
on the right hand side.

From the above, we can deduce that V is reflexive:

Theorem 2.0.8
Let V be a finitely presented R-module. Set

V ∨∨ := HomR-Mod(V
∨, R).

The natural map
V → V ∨∨, f 7→ (p 7→ p(f))

is an isomorphism of R-modules. In particular, V is reflexive and the dual of every finitely copresented
R-module (which is always the dual of a finitely presented R-module) is finitely presented.

Proof The identification
Sym∗V → RSpec Sym∗V = RV ∨

is an identity of R-algebras with an R×-action. In particular, the homogeneous elements of degree 1 on
the left hand side correspond to the homogeneous elements of degree 1 on the right hand side. This yields
an isomorphism

ϕ : V → HomR×(V ∨, R) := {u : V ∨ → R | ∀t ∈ R×∀v ∈ V : u(vt) = u(v)t}, v 7→ (p 7→ p(v))

ofR-modules. As the image of ϕ lies inside V ∨∨ ⊆ HomR×(V ∨, R) we actually have V ∨∨ = HomR×(V ∨, R)
and the theorem is proven. □

Remark 2.0.9 It follows from the above that for a finitely copresented R-module V ∨, a (1-)homogenous
map V ∨ → R is already R-linear (principle of microlinearity).
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3 Serre’s affineness theorem

Ingo Blechschmidt and David Wärn proved the following analogue of Serre’s theorem on affineness

Theorem 3.0.1
Let X be a scheme such that H1(X, I) = 0, for all I : X → R-Modwqc, then X is affine.

Here is a consequence:

Corollary 3.0.2 Let X be an affine scheme and Y : X → Schqc, such that each Yx is affine. Then
(x : X)× Yx is affine.

Proof Let M : (x : X)× Yx → R-Modwqc. Then (explanations for the steps below):

H1((x : X)× Yx,M) = ∥((x, yx) : (x : X)× Yx) → K(M(x,yx), 1))∥set
= ∥(x : X) → ((yx : Yx) → K(M(x,yx), 1))∥set
= ∥(x : X) → K((yx : Yx) → M(x,yx), 1)∥set
= 0 □

The first step, after expanding the definition, is just currying. To commute the Eilenberg-MacLane space
with the dependent function type, we use that Yx is affine and therefore the type (yx : Yx) → K(M(x,yx), 1)
is connected. It is a delooping of (yx : Yx) → M(x,yx), so by connectedness, it must be equivalent to
K((yx : Yx) → M(x,yx), 1). The last step uses that X is affine, and (yx : Yx) → M(x,yx), as a scheme-
indexed product of weakly quasi-coherent modules, is again weakly quasi-coherent.

4 Line bundles and divisors

4.1 Regular sections and regular closed subschemes

In classical algebraic geometry, there is the concept of a generic section of a line bundle. Informally,
the generic sections have the smallest possible vanishing set. The following definition corresponds to this
notion:

Definition 4.1.1 Let X be a type and L : X → R-Mod a line bundle. A section

s :
∏
x:X

Lx

is regular , there merely is a trivializing affine cover U1 = SpecA1, . . . , Un = SpecAn of L, such that each
trivialized restriction

si : SpecAi → R

is a regular element (??) of (SpecAi → R) = Ai.

Lemma 4.1.2 Let s : SpecA → R. s being regular is Zariski-local, i.e. for all Zariski-covers U1, . . . , Un

of SpecA, s is regular, if and only if it is regular on all Ui.

Proof It is enough to check this for a localization at f : A. Let

s

1
· g

fk
= 0.

then f lsg = 0, which implies f lg = 0 by regularity of s and therefore g
f l = 0. □

Proposition 4.1.3 The choice of trivializing cover in definition 4.1.1 is irrelevant.

Proof By lemma 4.1.2. □

From a line bundle together with a regular section, we can produce a closed subtype of a special kind:

Definition 4.1.4 Let X be a scheme. A regular closed subtype of X is a closed subtype C : X → Prop,
such that there merely is an affine open cover U1 = SpecA1, . . . , Un = SpecAn, and C ∩ Ui is V (fi) for
a regular fi : Ai.
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Lemma 4.1.5 Let f, g : A, f be regular and V (f) = V (g), then g is regular and there is a unique unit
α : A×, such that αf = g.

Proof V (f) = V (g) implies there are α, β : A such that αf = g and βg = f . But then: f = βg = βαf .
So by regularity of f , βα = 1. By ??, units are regular and products of regular elements are regular, so
g is regular. Uniqueness of α follows from regularity. □

Theorem 4.1.6 (using ??)
Let X be a scheme. For any regular closed subscheme C, there is a line bundle with regular section (L, s)
on X, such that C = V (s).

Proof Let U1 = SpecA1, . . . , Un = SpecAn be a cover by standard affine opens such that we have
regular fi with C ∩Ui = V (fi). We define L to be the trivial line bundle 7→ R on each Ui and by giving

automorphisms on the intersections Ui ∩ Uj :≡ Uij = SpecAij . On Uij , C is given by V ( fi1 ) and V (
fj
1 )

which are both regular. Therefore, there is a unit α : A×
ij such that α fi

1 =
fj
1 , which we can also view

as a map Uij → R× and since R× is equivalent to the automorphism group of R as an R-module, this
provides the identetification we need to construct L. Under the identification, the local regular sections
are identified, so we get a global section s of L, which is locally regular. □

5 Segre Embedding

Maybe this should be moved to the draft on proper schemes. This section just repeats classical knowledge
which happens to work synthetically.

Definition 5.0.1 (a) A projective scheme is type X such that there is a closed subset of some Pn

equivalent to X.

(b) A quasi-projective scheme is type X such that there is an open subset of a closed subset of some
Pn equivalent to X.

We write [x] for the point in Pn given by a vector x : Rn+1.

Definition 5.0.2 The Segre-Embedding is the map s : Ps × Pt → Ps·t given by

([x0 : · · · : xs], [y0 : · · · : yt]) 7→ [(xi · yj)i,j ]

Proposition 5.0.3 The Segre-Embedding is a closed embedding.

Proof First, let [x], [x′] : Ps and [y], [y′] : Pt such that there is a λ : R× with xiyj = λx′
iy

′
j for all i, j.

There is a l, ki such that xl ̸= 0 and yk ̸= 0. By the condition above, this implies x′
l ̸= 0 and y′k ̸= 0.

Then we have

xi = λ · x
′
iy

′
k

yk
=

xlyk
x′
ly

′
k

· x
′
iy

′
k

yk
=

xl

x′
l

· x′
i.

This shows the Segre-Embedding is an embedding.

A point [z] : Ps·t is in the image of the Segre-Embedding, if and only if the equation zij · zkl = zil · zkj
holds: We have an invertible zij and can define xl :≡ zlj · z−1

ij and yk :≡ zik · z−1
ij . Then xl · yk =

zlj · z−1
ij · zik · z−1

ij = zlk · z−1
ij , which shows that [(zlk · z−1

ij )lk] is in the image of the Segre-Embedding and
therefore [z]. □

Theorem 5.0.4
The type of (quasi-)projective schemes is closed under products of schemes.

6 Blow-up of Projective Space

(This does not correspond to the usual Blow-up and should be thought of as a blow-up of a system of
equations.)
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Definition 6.0.1 Let V = V (P1, . . . , Pl) ⊆ Pn be a closed subset given by homogenous polynomials
P1, . . . , Pl of the same degree. Then the closed subset given by

BlV :Pn × Pl−1 → Prop

([x], [y]) 7→
∧
i,j

(Pi(x) · yj = Pj(x) · yi)

is called the blow-up of Pn at V . There is a projection πV : BlV → Pn.

Proposition 6.0.2 Let V = V (P1, . . . , Pl) ⊆ Pn be a closed subset given by homogenous polynomials
P1, . . . , Pl of the same degree.

(a) BlV is a projective scheme.

(b) For U :≡ D(P1, . . . , Pl) we have π−1
V (U) = U .

Proof (a) By Segre-Embedding.

(b) By definition of BlV , the vectors y and (P1(x), . . . , Pl(x)) are linearly dependent. So [x] : Pn is in U
if and only if (P1(x), . . . , Pl(x)) has an invertible entry. But in that case, [y] is uniquely determined,
so the corestriction of πV to U is an equivalence. □

Definition 6.0.3 Let V = V (P1, . . . , Pl) ⊆ Pn be a closed subset given by homogenous polynomials
P1, . . . , Pl of the same degree. Then Lv([x], [y]) :≡ R⟨y⟩ defines a line bundle on BlV .

Proposition 6.0.4 In the same sitaution there is a pointwise at most rank 1 submodule IV ⊆ LV on
BlV such that IV,x ̸= 0 implies D(P1, . . . , Pl)(πV (x)).

Proof (Sketch) IV,x is generated by the vector (P1, . . . , Pl). □

This means that we transformed the quasi-projective U into an equivalent quasi-projective π−1
V (U) ⊆

BlV which is locally a standard-open.

7 External justification of axioms

This is an unfinished justification of the axioms of SAG, using Kripke-Joyal Semantics. This was once a
part of [CCH23].

7.1 Justification of ??

Lemma 7.1.1 Let (C, J) be a site, where the Grothendieck topology J is subcanonical. Let

f : E ↠ y(c)

be an epimorphism in Sh(C, J) with representable codomain. Then there is a J-cover (ci → c)i∈I of c
such that for every i, the pullback of f along y(ci) → y(c) is a split epimorphism.

Ei E

y(ci) y(c)

fi
⌟

f

Proof By the Yoneda lemma, an epimorphism E ↠ y(c) is split if and only if the particular element idc ∈
y(c)(c) is in the image of the map E(c) → y(c)(c). Applying the usual characterization of epimorphisms

of sheaves [MM12, Corollary III.7.5] to the element idc ∈ y(c)(c) shows that there is a J-cover (ci
gi−→ c)i∈I

such that for every i ∈ I, there is some ei ∈ E(ci) with fci(ei) = gi ∈ y(c)(ci). But this means that idci
is in the image of (fi)ci : Ei(ci) → y(ci)(ci), as we can see by evaluating the pullback diagram at ci. So
fi is a split epimorphism. □
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Let us formulate a version of the axiom ?? in infinitary first-order logic extended with unbounded
quantification over objects/sorts (∃A.φ, ∀A.φ) and quantification over functions (∃f : A → B.φ, ∀f :
A → B.φ) as in Shulmans stack semantics [Shu10, Section 7].

We also use the syntax {x : A | φ(x)} for bounded set comprehension, but this can be translated
away. TODO

φ0 :≡
∧

n,m∈N
∀r1, . . . , rm : R[X1, . . . , Xn]. φ1

SpecA :≡ {x : Rn | ev(r1, x) = · · · = ev(r1, x) = 0}
φ1 :≡ ∀E. ∀π : E → SpecA. ((∀x : SpecA. ∃e : E. π(e) = x) ⇒ φ2)

φ2 :≡
∨
k∈N

∃f1, . . . , fk : R[X1, . . . , Xn]. f1 + · · ·+ fk = 1 ∧ φ3

D(fi) :≡ {x : SpecA | ∃y. ev(fi, x)y = 1}

φ3 :≡
k∧

i=1

∃s : D(fi) → E. ∀x : D(fi). π(s(x)) = x

8 Group schemes are not smooth

The first example is very classical, we just give it because it is interesting.

Lemma 8.0.1 Assume 2 = 0. Then the sub-group:

µ2 = Spec(R[X]/X2 − 1) ⊂ A×

is not smooth.

Proof Since 2 = 0, for all x : R we have x2 = 1 iff (X2 − 1). So as a scheme we have:

µ2 = Spec(R[X]/(X − 1)2) = Spec(R[X]/X2) = D(1)

which is not smooth. □

Proposition 8.0.2 Not all group schemes are smooth (without any assumption on the characteristic).

Proof For any closed proposition P consider the closed subgroup:

1 + P ⊂ Z/2Z

sending 1 to the the unit 0 and P to 1. If the group is smooth then so is P , which would then be
decidable. □

9 Hilbert’s Nullstellensatz

In this section we prove that the Jacobson radical of any f.p. algebra A is equal to its nilradical. The
idea for this result as well as the proof for A = R was given to me (Hugo Moeneclaey) by Max Zeuner.

Definition 9.0.1 Let A be an R-algebra, then we define the nilradical Nil(A) of A as the ideal of
nilpotents in A.

Definition 9.0.2 Let A be an R-algebra, then we define the Jacobson radical Jac(A) of A as the ideal
of a : A such that forall b : A we have 1− ba invertible.

Classically, I think this is equivalent to the intersection of all maximal ideal.

Lemma 9.0.3 For any R-algebra A we have:

Nil(A) ⊂ Jac(A)

Proof Because 1 + x is invertible for x nilpotent. □
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Lemma 9.0.4 We have:
Nil(R) = Jac(R)

Proof We have that:
∀(y : R). 1− xy inv

⇔ ∀(y : R). ¬(xy = 1)

⇔ ¬(∃y : R. xy = 1)

⇔ ¬¬(x = 0)

⇔ x nil □

Proposition 9.0.5 For any f.p. algebra A, we have that:

Nil(A) = Jac(A)

Proof Assume a : A. We have that a is nilpotent if and only if:

∀(x : Spec(A)). a(x) nil

Now by lemma 9.0.4 this is equivalent to:

∀(x : Spec(A))(y : R). 1− a(x)y inv

Which by considering b to be the constant map with value y, is equivalent to:

∀(b : A)(x : Spec(A)). 1− a(x)b(x) inv

which is the equivalent to:
∀(b : A). 1− ab inv □

10 Automorphisms of projective space

The following should be one part of showing that autormorphisms of Pn are given by PGLn+1(R).

Theorem 10.0.1
Let f : Pn → Pn be an arbitrary map. Suppose f is not not in PGLn+1(R). Then f is in PGLn+1(R).

Proof First note that f sends any n + 1 points in general position to n + 1 points in general position.
This is because to be in general position means that a determinant is invertible, which is a negative
property, and any map in PGL preserves the property of being in general position.

Let ei be the point of Pn with zeroes in all coordinates except the ith. Since e0, · · · , en are in general
position, so are f(e0), · · · , f(en). Thus we can find f ′ ∈ PGL with f ′(ei) = f(ei). Replacing f by f ′−1◦f ,
we may assume that f(ei) = ei. Now if f is in PGL, it must be given by a diagonal matrix, so f is not
not given by a diagonal matrix.

Write Ui ⊆ Pn for the standard affine patch of Pn consisting of points whose ith coordinate is invertible.
We have that f(Ui) ⊆ Ui, since to be in Ui is a negative property and this containment holds if f is given
by a diagonal matrix. Now f restricts to a map Ui → Ui which by SQC is given by n+ 1 polynomials in
n variables. Homogenising these polynomials, we see that for x = [X0 : · · · : Xn] ∈ Ui, f(x) is given by
polynomials pi0, · · · , pin ∈ R[X0, · · · , Xn] homogeneous of some degree di, so that f(x) = [pi0 : · · · : pin],
where pii = Xdi

i .

Since f(ei) = ei, we have that the coefficient of Xdi
i in pij is zero for i ̸= j. We also have that the

coefficient of Xdi−1
i Xj in pij is invertible, since this holds when f is given by a diagonal matrix (in this

case the coefficient is the ratio of diagonal entries). We also know that pijpkl = pilpkj for all i, j, k, l since
the descriptions of f on all the patches match up.

We claim that pij is a unit multiple of Xdi−1
i Xj . To this end, we claim that pij is a sum of monomials

which contain neither X2
j nor Xk for k ̸= i, k ̸= j. We prove both of these claims separately but using the

same idea. The idea is that of fixing a monomial ordering, and using the fact that if g, h are monomials
with g ‘pseudomonic’ in the sense that g has invertible leading coefficient, then any bound on the degree
of gh gives a bound on the degree of h. We may assume i ̸= j in either case.
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1. X2
j : consider the equation pijpji = Xdi

i X
dj

j . Consider some monomial ordering which is lexico-

graphic first on the degree of Xj and then on Xi. Here pji is pseudomonic of degree X
dj−1
j Xi.

Thus pij has degree at most XjX
di−1
i (and indeed that coefficient is assumed invertible). So X2

j

cannot appear in pij .

2. Xk where k ̸= i, k ̸= j: consider the equation pijpjk = pikX
dj

j . Consider some monomial ordering
which is lexicographic first on the degree of Xk and then on Xj . By the above, pjk is pseudomonic

of degree X
dj−1
j Xk, and the degree of pik is at most XkX

di−1
j . Thus the degree of pij is at most

XkX
di−1
j X

dj

j /(X
dj−1
j Xk) = Xdi

j . Thus Xk cannot appear.

Given that pij is a unit multiple of Xdi−1
i Xj , it is direct that f is given by a diagonal matrix. This

finishes the proof. □

11 Projective module and vector bundle

In this section we prove the that for any f.p. algebra A we have an equivalence between vector bundles
over Spec(A) and f.g. projective A-module.

Lemma 11.0.1 Assume given a f.p. algebra A and B a flat A-algebra, with A-modules M,N such that
M is finitely presented. Then we have that:

HomA(M,N)⊗A B = HomB(M ⊗A B,N ⊗A B)

Proof Assume we have an exact sequence:

Am → An → M → 0

so by applying HomA( , N) we get an exact sequence:

0 → HomA(M,N) → Nn → Nm

Then by applying ⊗A B to the first sequence we have an exact sequence:

Bm → Bn → M ⊗A B → 0

and then by applying HomB( , N ⊗A B) we get an exact sequence:

0 → HomB(M ⊗A B,N ⊗A B) → (N ⊗A B)n → (N ⊗A B)m

Finally using B flat and applying ⊗A B to the second sequence, we get an exact sequence:

0 → HomA(M,N)⊗A B → Nn ⊗A B → Nm ⊗A B

From this we can conclude. □

Proposition 11.0.2 Let A be a f.p. algebra, then the equivalence:

{bundles of f.p. modules over Spec(A)} ≃ {f.p. A−modules}

restricts to an equivalence:

{vector bundles over Spec(A)} ≃ {f.p. projective A−modules}

Moreover any finitely generated projective A-module is in fact finitely presented.

Proof Let M be a finitely generated projective A-module. For any x : Spec(A), we write:

Mx := R⊗A M

Then we can check that for any x : Spec(A) we have that Mx is projective and finitely generated, therefore
Mx is finite free since R is local. So x 7→ Mx indeed gives a vector bundle.
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Conversely let x 7→ Mx be a vector bundle over Spec(A), let us write:

M :=
∏

x:Spec(A)

Mx

We already know that M is finitely presented.
Since the Mx are free, we know that the exists a finite cover of Spec(A) by D(fi) such that for all i

we have that Mfi is a free Afi-module.
Let us prove that the map of A-module:

HomA(M,An) → HomA(M,M)

is surjective. To do this it is enough to prove that the induced map:

(HomA(M,An))fi → (HomA(M,M))fi

is surjective for all i. But by lemma 11.0.1 we have that this map is isomorphic to:

HomAfi
(Mfi , A

n
fi) → HomAfi

(Mfi ,Mfi)

Since Mfi is a free Afi -module, we know that the surjection:

An
fi → Mfi

is split, therefore the considered map is indeed surjective.
From the fact that the map:

HomA(M,An) → HomA(M,M)

is surjective we conclude that M is a direct summand of An, and therefore it is indeed projective. □

12 Overtness

A type X is overt iff X-indexed sums preserve openness, that is iff for every open U ⊆ X the proposi-
tion “U is inhabited” is open again. The following proposition emerged at the 2024 Dagstuhl meeting,
prompted by and jointly with Andrej Bauer and Mart́ın Escardó:

Proposition 12.0.1 The following statements are equivalent.
1. The ring R is overt.

2. For every polynomial f : R[X], the proposition that f has an anti-zero (a number x such that f(x) ̸=
0) is open.

3. The ring R is infinite in the sense that for every natural number n, there are n pairwise distinct
elements of R.

4. The ring R is infinite in the sense that for every finite list x1, . . . , xn of elements of R, there is an
element y distinct from all of the xi.

Proof Statement 2 is just the special instance of Statement 1 for the case U = D(f). Conversely,
Statement 1 follows from Statement 2 because an arbitrary open of R is of the form

⋃n
i=1 D(fi) and

because finite disjunctions of open propositions are open. Trivially, Statement 4 implies Statement 3.
To verify that Statement 3 implies Statement 2, let f : R[X] be a polynomial. By definition,

there is an upper bound n of the formal degree of f . By assumption, there are n + 1 pairwise dis-
tinct numbers r0, . . . , rn. Then the statement that f has an antizero is equivalent to the finite dis-
junction

∨n
i=0(f(ri) ̸= 0): The “if” direction is trivial, and for the “only if” direction, assume to the

contrary that f(r0) = . . . = f(rn) = 0. Then f can be factored as f(X) = (X − r1) · · · (X − rn) · c.
Because f(r0) = 0, we have c = 0 and hence f = 0. This is a contradiction to f admitting an antizero.

To verify that Statement 2 implies Statement 4, let numbers x1, . . . , xn of R be given. Up to double
negation, the monic polynomial (X − x1) · · · (X − xn) + 1 has a zero. Hence up to double negation, the
polynomial f(X) = (X − x1) · · · (X − xn) has an antizero. By assumption, this statement is open and
therefore double negation stable, hence f actually has an antizero. □
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Remark 12.0.2 The equivalent conditions of Proposition 12.0.1 are satisfied in case the external base
ring k contains, for every natural number n, elements x1, . . . , xn whose pairwise differences are invertible.

Proposition 12.0.3 If R is overt, then every open neighborhood of 0 in R is infinite in the sense that
for every finite list x1, . . . , xn of elements, there is an element y distinct from all the xi.

Proof Let U ⊆ R be an open neighborhood of 0. Then there is a polynomial f : R[X] such that 0 ∈
D(f) ⊆ U . Let x1, . . . , xn be elements of U . Up to double negation, the polynomial (X − x1) · · · (X −
xn) ·X ·f +1 has a zero. Such a zero is an element y which is distinct from all the xi (and from 0). So up
to double negation, the polynomial (X − x1) · · · (X − xn) ·X · f has an antizero. Because R is overt, the
existence of an antizero is (open and hence) double negation stable so that we can conclude that there
actually is an antizero. □
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