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Introduction

This is an incomplete draft on work in progress on proper schemes in synthetic algebraic geometry as
introduced in [CCH23]. We assume the axioms presented in [CCH23] throughout these notes.

1 Preliminaries

We will use [CCH23][Lemma 4.2.11]:

Lemma 1.0.1 Let C be a closed proposition and U be an open proposition, then C → U is equivalent
to ¬C ∨ U .

We will also need:

Lemma 1.0.2 Let C be a closed proposition and U : C → Open a family of open propositions. Then
there merely is an open proposition Ũ : Prop such that for any c : C, U(c) = Ũ .

Proof By [CCH23, Theorem 4.2.6], U can be represented by a list f1, . . . , fn of elements of RC . Since
C is a closed proposition, the map R → RC is a quotient map, hence surjective. So we can merely find
preimages f̃1, . . . , f̃n : R. Then we take Ũ to be D(f̃1, . . . , f̃n). □
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2 Compact Types

The following is expected to be analogous to completeness in algebraic geometry. Since it coincides with
the defintion of compactness in synthetic topology ([MISSING]) due to Mart́ın Escardó, we just call it
compact:

Definition 2.0.1 A type X is compact , if for any open proposition U : X → Open on X, the type
(x : X) → U(x) is open.

Example 2.0.2 All finite types are compact, since a conjuction of open propositions is open.

Lemma 2.0.3 If A is compact and for each x : A, B(x) is a compact type, then the dependent sum
(x : A)×B(x) is compact.

Proof Let U : ((x : A) × B(x)) → Open be open. We have to show (y : (x : A) × B(x)) → U(y) is
open. By currying, this is (x : A) → (z : B(x)) → U(x, z). By compactness of each B(x), the type
Vx :≡ (z : B(x) → U((x, z)) is open for all x : A. So we have to show (x : A) → Vx is open, but this is
the case by compactness of A. □

Lemma 2.0.4 Any closed proposition is compact.

Proof Let U : C → Open. Then, by lemma 1.0.2, there merely is Ũ : Open, such that U(c) = Ũ for any
c : C. Thus (x : C) → U(x) is equivalent to C → Ũ . By lemma 1.0.1, this is equivalent to ¬C ∨ Ũ , which
is open. □

With this we can generalize lemma 1.0.2 to types:

Proposition 2.0.5 Let X be a type, C ⊆ X a closed subtype and U ⊆ C open. Then there is an open
Ũ ⊆ X such that Ũ ∩ C = U .

Proof We take Ũ(x) :≡ (C(x) → U(x)). □

Lemma 2.0.6 A closed subtype of a compact type is compact.

Proof By lemma 2.0.4 and lemma 2.0.3. □

Lemma 2.0.7 If A is compact and f : A → B is such that for all y : B, there not not exists x : A with
f(x) = y, then B is compact.

Proof Let U : B → Open. The assumption on f can be written as (y : B) → ¬¬∥(x : A) × f(x) = y∥.
Then, by ¬¬-stability of opens and our assumption:

(y : B) → U(x) = (y : B) → ¬¬∥U(y)∥
= (x : A) → ¬¬∥U(f(x))∥
= (x : A) → U(f(x))

Where the latter is open by the assumption that A is compact. □

Corollary 2.0.8 Let f : A→ B, then the image of any compact subtype of A is compact.

Proposition 2.0.9 A1 is not compact.

Proof Assume A1 is compact. For a : R, x : A1, let Ua(x) :≡ (1+ax ̸= 0). Note that (x : A1) → Ua(x) is
equivalent to ¬(a invertible) = ¬¬(a = 0). So by assumed compactness of A1, the proposition ¬¬(a = 0)
is open, and therefore the formal disk D :≡ {x : R | ¬¬(x = 0)} is open.

To see this, assume D is open and note D ∩ (A1 \ {0}) = ∅. A1 \ {0} ⊆ A1 is dense, so D = ∅, which
contradicts 0 ∈ D. □

So also any type Y that admits a surjection to A1 is not compact, which includes all An for n > 0.

Lemma 2.0.10 A type X is compact if and only if ∥X∥0 is compact.

Proof Clear as open in X are equivalent to open in ∥X∥0. □
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2.1 Compact propositions

Written by Hugo.

Lemma 2.1.1 An open proposition is compact if and only if it is decidable.

Proof If it is decidable then it is compact. Conversely let U be a compact open proposition. Then there
merely exists C closed such that U = ¬C. Since U is compact and ⊥ is open, we have that ¬U is open,
i.e. ¬¬C is open. Then:

C → ¬¬C

gives:
¬C ∨ ¬¬C

and this is precisely:
U ∨ ¬U □

Lemma 2.1.2 Let U be an open proposition, and C : U → Prop a family of closed propositions. Then
Σx:UC(x) is compact if and only if it is closed.

Proof If it is closed then it is compact. Conversely assume Σx:UC(x) is compact. Then U is merely of
the form ¬D for D a closed proposition and we have that:

¬U → ¬(Σx:UC(x))

so that:
D → ¬(Σx:UC(x))

Since Σx:UC(x) is compact we have that ¬(Σx:UC(x)) is open, and then we have that:

¬D ∨ ¬(Σx:UC(x))

Since ¬D = U we can conclude Σx:UC(x) closed in both cases. □

Lemma 2.1.3 Let X be a separated scheme and C ⊆ X compact, then the complement of C is open.

Proof By separatedness, x ̸= y is open for all x, y : X, so the complement (x : X) × ((y : C) → x ̸= y)
is open. □

3 Projective Schemes

Definition 3.0.1 A scheme X is projective if it merely is a closed subtype of Pn for some n ∈ N.

The goal of this section is to prove that projective space Pn is compact, a classical result of elimination
theory. We will first deal with the case n = 1, using algebraic methods, and then deduce the general case.

The following lemma can be understood as a version of the Euclidean algorithm for univariate poly-
nomials in the abscence of decidable equality.

Proposition 3.0.2 Let p1, . . . , pn : R[X]. Then we can find propositions b1, . . . , br, with each bi of
the form D(u) ∧ v1 = . . . = vk = 0, such that ¬¬(b1 ∨ . . . ∨ br), and for any i, we either have that
(p1, . . . , pn) = 0 if bi holds, or we have a natural d such that if bi holds, then (p1, . . . , pn) is principal
generated by a degree d monic polynomial.

Proof (sketch) We suppose each pi is represented by a list of coefficients. If one of these lists is empty,
we simply throw it away. If there is no pi left, then there is nothing left to prove: we take r = 1 and
b1 = D(1), and note that (p1, . . . , pn) = 0. Thus we may suppose n ≥ 1, and take i such that the formal
degree of pi is the smallest. Let u be the leading coefficient of pi. We have ¬¬(D(u) ∨ u = 0). In either
case, we can make progress: if D(u) and n = 1, then (p1, . . . , pn) is (pi) with pi monic; if D(u) and n > 1,
then we can divide the other pj by pi, decreasing their formal degrees; and if u = 0 then we can reduce
the formal degree of pi. □

Lemma 3.0.3 Let A be an R-algebra, J an ideal of R, and x, y : A elements such that xy = 1. Suppose
1 is in both J [x] and J [y]. Then there is m : J such that m = 1 in A.
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Proof Write 1 =
∑n

i=0 aix
i =

∑m
j=0 bjy

j . Multiplying by yj , we have yj =
∑n

i=0 ajx
iyj . For 0 ≤

j ≤ m, we have xiyj ∈ {ym, ym−1, . . . , y, 1, x, . . . , xn}, since xy = 1. Hence ⟨ym, . . . , 1, . . . , xn⟩ =
J⟨ym, . . . , 1, . . . , xn⟩. By Nakayama, there is m : J such that m · 1 = 1 in A. □

Lemma 3.0.4 Let U1 : P1 \ {0} → Open and U2 : P1 \ {∞} → Open be open subsets of the two affine
patches of the projective line. Then there merely is an open proposition φ, such that if (x : P1 \ {0}) →
U1(x) and (x : P1 \{∞}) → U2(x) both hold, then φ also holds, and if φ holds, then for all x : P1 \{0,∞},
U1(x) ∨ U2(x) holds.

Proof By [CCH23, Theorem 4.2.7], we have U1 = D(p1, . . . , pn) and U2 = D(q1, . . . , qm), where
pi ∈ R[X] and qi ∈ R[Y ]. By applying proposition 3.0.2 twice and combining the results, we can
find propositions b1, . . . , br with each bi of the form D(u) ∧ v1 = . . . = vk = 0, so that for each i, both
(p1, . . . , pn) and (q1, . . . , qm) are principal when bi holds (in the strong sense: we know what the degree
will be even without knowing bi).

Consider now an i such that if bi holds, then (p1, . . . , pn) and (q1, . . . , qm) are both the unit ideal.
Write bi as D(u) ∧ v1 = . . . = vk = 0. Since (p1, . . . , pn) is the unit ideal if bi holds, we have that
(R[X]/(p1, . . . , pn))

bi = R[X,u−1]/(p1, . . . , pn, v1, . . . , vk) is trivial. Thus 1 ∈ J [X] inR[X,u−1]/(p1, . . . , pn)
where J = ⟨v1, . . . , vk⟩. In R[x, y, u−1]/(xy − 1, p1(x), . . . , pn(x), q1(y), . . . , qm(y)), we thus have 1 ∈ J [x]
and 1 ∈ J [y]. By lemma 3.0.3, we have m′ : J such that m′ = 1 in this ring. This means we have
m : J , N : N such that uN = m in R[x, y]/(xy − 1, p1(x), . . . , qm(y)). We take φ to be the disjunction of
D(uN −m) over all such i.

We first verify that U1 and U2 cover their respective affine patches, then φ holds. That is, we have
to derive a contradiction from the assumption that uN −m = 0 in R for each i as above. Since our goal
is ¬¬-stable, we may suppose given i such that bi holds. Since U1 and U2 cover their respective affine
patches, we actually do have that (p1, . . . , pn) and (q1, . . . , qm) are both the unit ideal. Thus i must be
of the form above. But now u is invertible and m = 0, contradicting uN −m = 0.

Next suppose φ holds and z : P1 \ {0,∞}. We have to show U1(z)∨U2(z). We can write z = [1 : x] =
[y : 1] with xy = 1, so that we have to show ¬(p1(x) = . . . = pn(x) = q1(y) = . . . = qm(y) = 0). Since we
assume φ holds, we can assume given an i such that uN −m is invertible in R. Since uN = m in the ring
R[x, y](xy − 1, p1, . . . , qm), this ring is trivial, so its spectrum is empty, as needed. □

Theorem 3.0.5
The projective line P1 is compact.

Proof Let U ⊆ P1 be open. Letting U1 = U \{0} and U2 = U \{∞}, take φ as in lemma 3.0.4. We claim
that (x : P1) → U(x) is equivalent to U(0)∧U(∞)∧φ, which is clearly open. The forward implication is
clear. For the reverse implication, observe that given x : P1, we have ¬¬(x = 0∨ x = ∞∨¬(x = 0∨ x =
∞)), and that U(x) is ¬¬-stable. □

Theorem 3.0.6
For each n, Pn is compact.

Proof We have to show that for any R-module V which is free of finite rank, PV is compact. We induct
on m = dimV . For m ≤ 1, this is clear, since finite types are compact. Thus suppose m ≥ 2, so that we
may pick u, v : V linearly independent.

Say a flag in V of rank r is a sequence 0 = W0 ⊆ W1 ⊆ . . . ⊆ Wr of submodules of V such that
Wi+1/Wi is free of rank 1 for each i. Let Fr be the type of flags in V of rank r such that W1 is contained
in ⟨u, v⟩.

We claim that Fr is compact for each r. We prove this by induction on r. For r = 1, we have
F1 = P⟨u, v⟩ = P1, which is compact by theorem 3.0.5. An element of Fr+1 is given by an element
W0, . . . ,Wr of Fr together with a point of P(V/Wr). Since V/Wr is free of rank m− r < m, P(V/Wr) is
compact by inductive hypothesis. Thus Fr+1 is compact, since compact types are closed under Σ.

We define a map Fm−1 → PV ⋆, where V ⋆ is the dual module of V . A point of PV ⋆ is equivalently a
surjection V → Q where Q is free of rank 1, and indeed we have such a surjection V → V/Wm−1 for any
point of Fm−1.

We claim that this map satisfies the assumptions for lemma 2.0.7. Say given a point of PV ⋆. We can
represent it by a linear map c : V → R. It is not not the case that c(w) = 0 for some non-zero w : ⟨u, v⟩,
for if c(u) ̸= 0 then we can take w = v − c(v)

c(u)u. Given such a w, we can extend it to a basis of ker c,

defining the desired point of Fm−1.
Putting everything together, we conclude that PV ⋆ is compact. Since V ⋆ = V , PV is also compact

as needed. □
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Theorem 3.0.7
Projective schemes are compact.

Proof By Lemma 2.0.3, Lemma 2.0.4 closed subtypes of a compact type are compact, so any closed
subtype of Pn is compact by Theorem 3.0.6. □

4 Quasi-projective Schemes

Written by Hugo.

Definition 4.0.1 A scheme X is quasi-projective if it merely is a closed in an open in a projective space.

We think we could equivalently define it as an intersection of an open and a closed. Note that
quasi-projective schemes are separated. Are all separated schemes quasi-projective?

Lemma 4.0.2 Projective schemes and affine schemes are quasi-projective.

Lemma 4.0.3 A closed or open subscheme of a quasi-projective schemes is itself quasi-projective.

Proof Remember open in closed is intersection of closed and open. □

Proposition 4.0.4 A quasi-projective scheme is compact if and only if it is projective.

Proof Consider a quasi-projective compact scheme X, then we merely have an embedding:

i : X ⊂ Pn

which fibers are of the form Σx:UC(x) with U open and C(x) closed for all x. Since i goes from a compact
type to a type with compact identity types (as closed proposition are compact), its fibers are compact
(since compact types are closed by dependent sums). Then by lemma 2.1.2 we conclude that i is actually
a closed embedding, and X is projective. □

Do we have that any proper (i.e. compact and separated) scheme is projective? Without separatedness
this fails as the suspension of an open proposition is a compact compact scheme, but it is not always
separated (so not always projective).

5 Projective and quasi-projective schemes are stable under de-
pendent sums

BEWARE, SECTION IN PROGRESS, By Hugo and Felix.
Here we go through the surprisingly long road giving quasi-projective schemes stable under dependent

sums. At the moment, for projective schemes to be stable by dependent sums we are missing the following:
• H2(Pn,A×) = 0

• Aut(Pn) = PGLn+1

• Any locally free bundle on Pn is becomes generated by global sections when twisted enough.

5.1 Families of projective spaces being a projectivisation of a bundle

In this section we prove that for any type X, if H2(X,A×) = 0 then any family of projective spaces over
X is the projectivisation of a bundle of finite free modules over X. Next two lemmas are about HoTT
only, not SAG.

Lemma 5.1.1 Assume given a central extension:

0 → A→ K → G→ 0

Then the fibers of the induced map:
f : BK → BG

are BA-torsors.
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Proof We know that the fibers are merely inhabited, 0-connected and 1-truncated, because this holds
for the fiber over ∗ : BG. So we just need to check that for all x : BG and any point in y : fibf (x) we
have that:

(fibf (x), y) = (BA, ∗)

Since the fibers are 0-connected and 1-truncated, it is enough to show that:

(y =fibf (x) y) ≃Group A

to conclude. This is equivalent to saying that for all y : BK, we have:( ∑
p:y=BKy

f(p) = reflf(y)

)
≃Group A

For y = ∗ this is immediate. Then we need to check that the induced conjugation action of K on A is
the identity. But this follows from the assumed centrality of A in K. □

Remark 5.1.2 With a bit more work, one can show that central extensions of G by A are classified by
pointed maps from BG to B2A. Traditionally one only state that they have the same 0-truncations, i.e.
central extensions up to iso correspond to H2(G,A).

Lemma 5.1.3 Assume given a central extension:

0 → A→ K → G→ 0

and a type X such that H2(X,A) = 0. Then any map from X to BG factors through BK

Proof By the previous lemma the map BK → BG is actually of the form:(∑
x:BG

P (x)

)
→ BG

With P (x) a BA-torsor for all x : BG.
Given a map f : X → BG, factoring it through f means proving:∏

x:X

P (f(x))

which in turns means proving that the BA-torsor:

P ◦ f : X → B2A

is trivial. But since H2(X,A) = 0, this we merely have such a factorisation for any torsor. □

Proposition 5.1.4 We have a central extension:

0 → A× → GLn+1 → Aut(Pn) → 0

Proof TODO, difficult, says Aut(Pn) = PGLn+1. David has a sketch for n = 1. □

A projective space is a type merely equal to Pk for some k.

Corollary 5.1.5 Assume given X such that H2(X,A×) = 0. Then any family of projective spaces over
X is the projectivisation of a bundle of finite free modules over X.

Proof There is a well defined function from projective spaces to natural number giving the dimension,
as if Pm = Pn then we have m = n, for example by considering the tangent space at any chosen point.
Given a family of projective space over X, we split X as Σn:NXn with the family having dimension n on
Xn. So we can assume the family having constant dimension.

Now a family of projective spaces of dimension k overX is a mapX → BAut(Pn). By proposition 5.1.4
and lemma 5.1.3 we know this map lift through BGLn+1, but the map:

BGLn+1 → BAut(Pn)

though which we lift is precisely projectivisation, and we can conclude. □
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5.2 Projectivisation of a finite free line bundles over a projective space is
projective scheme

Lemma 5.2.1 A locally finite free bundle M on a type X is said to be globally generated if there exists
k : N and:

ϕ : (x : X) → HomR(R
k, Vx)

for all x : X we have ϕx surjective.

Lemma 5.2.2 Assume given globally generated bundle V of finite free module of Pn. Then:∑
x:Pn

P(V ⋆
x )

is a projective scheme.

Proof Since for all x : Pn have a surjective morphism:

ϕx : HomR(R
k, Vx)

this means we have an injective morphism:

ϕ⋆x : HomR(V
⋆
x , R

k)

Then we have that P(V ⋆
x ) is a closed subscheme of Pk, as V ⋆

x is finite free. From this we know that:∑
x:Pn

P(V ⋆
x )

is a closed subscheme of:
Pn × Pk

which is a projective scheme by the Segre embedding ??. □

Lemma 5.2.3 Assume V is a finite free module. Then for all finite free module L of dimension 1 we
have that:

P(V ) = P(HomR(L, V ))

Proof We define a map:
ϕ : P(HomR(L, V )) → P(V )

by sending any non-zero map v : HomR(L, V ) to the image of v in V . It is straightforward to check that
the image is a line, and that for λ : R× we have that λv and v have the same image, so this map is
well-defined. When checking that this map is an equivalence we can assume that L = R. Then ϕ is the
projectivisation of the isomorphism:

HomR(R, V ) ≃ V

so it is an equivalence. □

Lemma 5.2.4 Assume given of locally finite free bundle on Pn. Then for d large enough we have that
V (d) is globally generated.

Proof TODO, hard... Know how to do it for sums of twisted canonical line bundles. □

Lemma 5.2.5 Assume given a bundle V of finite free module over Pn. Then:∑
x:Pn

P(Vx)

is a projective scheme.

Proof By lemma 5.2.4 we know that V ⋆(d) is globally generated for d large enough. Then by lemma 5.2.2
we know that: ∑

x:Pn

P((V ⋆(d))⋆x)

is a projective scheme. Finally, for all x : Pn we have that:

P((V ⋆(d))⋆x) = P(HomR(O(d)x, Vx)) = P(Vx)

by lemma 5.2.3 because O(d)x is free of dimension 1. So we can conclude. □
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5.3 Projective schemes are stable under dependent sum

Lemma 5.3.1 We have that:
H2(Pn,A×) = 0

Proof TODO □

Proposition 5.3.2 Assume given X a projective scheme and Yx a family of projective schemes for x : X.
Then the scheme

∑
x:X Yx is projective.

Proof If X is a closed proposition this is clear because closed propositions have choice. Then it is enough
to show that for any family of projective spaces over Pn their total space is a projective scheme. This
holds since by lemma 5.3.1 and corollary 5.1.5 the family is a projectivisation of a bundle of finite free
modules, and then we conclude by lemma 5.2.5. □

5.4 Projectivisation of a finite free line bundle over an open proposition is a
quasi-projective scheme

TODO

5.5 Quasi-projective schemes are stable under dependent sum

TODO

6 Constructible Sets

In this section we introduce constructible sets and prove a version of Chevalley’s theorem.

Lemma 6.0.1 For a proposition P , the following are equivalent:
• P can be expressed as ¬¬(b1∨ . . .∨bn), with each bi the conjunction of a standard open proposition
and a closed proposition

• P can be expressed as ¬c1 ∧ . . .∧¬cm, with each cj the conjunction of a standard open proposition
and closed proposition.

We say P is constructible if either condition merely holds. For a type X, we say a subtype C : X → Prop
is constructible if the proposition C(x) is constructible for each x : X.

Proof Note that the second form is equivalent to ¬(c1 ∨ . . .∨ cm). An expression like b1 ∨ . . .∨ bn can be
understood as the disjunctive normal form of a propositional formula built from propositions of the form
v = 0. Hence, assuming excluded middle, the negation of such an expression is again of the same form.
Since we are dealing only with negated statement, we may assume excluded middle, giving the desired
result. □

Lemma 6.0.2 We have the following.
• Open propositions are constructible.

• The type of constructible propositions is closed under negation and conjunction.

• Constructible propositions are ¬¬-stable.
• The type of constructible propositions is a Boolean algebra, with join given by ¬¬(φ ∨ ψ).
• This is a Boolean subalgebra of the Boolean algebra of ¬¬-stable propositions.

The proof is direct in each case. Constructible propositions are not closed under disjunction, for if
¬¬(u = 0)∨¬¬(v = 0) were constructible, it would be equivalent to ¬¬(uv = 0), but it is is even stronger
than uv = 0. We will soon see that the Boolean algebra of constructible propositions enjoys a certain
universal property, namely that of Joyal’s constructible spectrum. First we need a more general lemma.

Lemma 6.0.3 Let L be a distributive lattice and B a boolean algebra. Let f : L → B be a map of
lattices, and suppose

• each element of B is generated from elements in the image of f using logical connectives

• f is an embedding.
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Then f exhibits B as the free Boolean algebra on the distributive lattice L.

Proof We need to show that B does not introduce more relations than necessary on expressions obtained
from the image of f . Thus suppose given such a relation x ≤ y in B. Writing x in disjunctive normal and
y in conjunctive normal form, it suffices to consider a relation of the form f(a) ∧ ¬f(b) ≤ f(c) ∨ ¬f(d).
This is equivalent by Boolean algebra laws to f(a) ∧ f(d) ≤ f(c) ∨ f(b), that is to f(a ∧ d) ≤ f(c ∨ b).
Since f is an embedding, we have a ∧ d ≤ c ∨ b already in L, as needed. □

Theorem 6.0.4
For a scheme X, the type of constructible subsets of X is the free Boolean algebra on the lattice of open
subsets of X.

Proof We apply lemma 6.0.3. To verify the first condition, that constructible sets are generated by open
sets by applying logical connectives, we pick an affine cover of X and on each patch apply an argument
analogous to the proof of [CCH23, Theorem 4.2.7]. The second condition, that open subsets embed in
constructible subsets, is direct. Note that the inclusion of open subsets into construtible subsets is a
lattice map, since φ ∨ ψ is equivalent to ¬¬(φ ∨ ψ) for φ, ψ open propositions. □

Finally we prove the main result about constructible subsets, a version of Chevalley’s theorem.

Theorem 6.0.5
Let X be a scheme and C : X → Prop a constructible subset of X. Then (x : X) → C(x) is constructible.

It follows by duality that ¬¬(x : X) × C(x) is constructible. This is closer to the usual statement that
the image of a constructible set is constructible.

Proof We may assume X = SpecA is affine, by picking an affine cover and using that constructible
propositions are closed under conjunction. Writing SpecA as a sigma-type and currying, it suffices to
consider two cases: A = R[x] and A = R/(a). In each case we apply theorem 6.0.4 to write C in the
form x 7→ ¬c1(x) ∧ . . . ∧ ¬cn(x) where c1 is the intersection of a standard open subset of SpecA and a
closed subset of SpecA.

In the case of A = R/(a), we use surjectivity of the quotient map R→ R/(a) to find one constructible
proposition φ such that C(x) = φ for all x : X. We claim that (x : X) → C(x) is equivalent to
¬¬(D(a) ∨ φ), which is constructible. To see that these are equivalent, we note that both propositions
are ¬¬-stable, so we can prove the equivalence assuming law of excluded middle, which makes it direct.

Now consider the case of A = R[X]. Since constructible propositions are closed under conjunction,
we may suppose C is of the form x 7→ ¬(D(p(x)) ∧ q1(x) = . . . = qn(x) = 0), with p, q1, . . . , qn : R[X].
Then (x : X) → C(x) is equivalent to the ring R[X, p−1]/(q1, . . . , qn) being trivial, hence to p being in the
radical of (q1, . . . , qn). We apply proposition 3.0.2 to q1, . . . , qn. We explain what to do when (q1, . . . , qn)
is zero or generated by one monic polynomial q. In the first case, (x : X) → C(x) is equivalent to the
assertion that each coefficient of p is nilpotent, which is a constructible proposition.

In the second case, say q is monic of degree d. We can divide pd by q to obtain a list of d elements of
R. We claim that (x : X) → C(x) is equivalent to ¬¬(q | pd), which is constructible since it asserts that
some list of d numbers is not not zero. The reverse implication is direct, using that C(x) is ¬¬-stable.
For the forward implication, we suppose (x : X) → C(x), so that q | pN for some N , and want to derive
a contradiction from the assumption ¬(q | pd). We appeal to [CCH23, lemma 3.4.3] to factorise q into
powers of distinct linear factors. Since q has degree d, each exponent in this factorisation is at most d.
Since q | pN , each linear factor must not not divide p. Supposing each linear factor divides p, q must
divide pd since the linear factors are coprime, as needed. □

While it is not clear how to characterise open propositions among constructible propositions, we do
have the following result.

Lemma 6.0.6 Let P be a proposition of the form (u1 ̸= 0 ∧ I1 = 0) ∨ . . . ∨ (un ̸= 0 ∧ In = 0) where Ii
are finitely generated ideals of R. Then P is open if and only if P is equivalent to P ′ where

P ′ := (u1 ̸= 0 ∧ I21 = 0) ∨ . . . ∨ (un ̸= 0 ∧ I2n = 0)

if and only if P is double negation stable.

Morally, this expresses the idea that an open subset is one which does not get bigger after ‘infinitesimal
fattening’.
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Proof Clearly if P is open then it is double negation stable. We have P → P ′ and P ′ → ¬¬P , so if P
is double negation stable then P is equivalent to P ′. It remains to show that if P ′ → P , then P is open.
We prove this by induction on n. We have P → (u1 ̸= 0)∨ . . .∨ (un ̸= 0), where the latter is open. Since
open propositions are closed under sigma, we may suppose that (u1 ̸= 0)∨ . . .∨ (un ̸= 0) holds. Without
loss of generality, say u1 ̸= 0 (so that in particular n ≥ 1). Thus P is equivalent to (I1 = 0) ∨Q, where
Q := (u2 ̸= 0 ∧ I2 = 0) ∨ . . ., and P ′ is equivalent to (I21 = 0) ∨Q′, with Q′ defined in the evident way.

Since P ′ → P , we have in particular (I21 = 0) → (I1 = 0) ∨ Q. By the following lemma, this means
(I21 = 0) → (I1 = 0) or (I21 = 0) → Q. In the first case, I1 = 0 is decidable by [Che+23]. If I1 = 0 is true,
then P is true, and hence decidable. If I1 ̸= 0, then P is equivalent to Q and P ′ is equivalent to Q′, so
Q is equivalent to Q′ and we are done by inductive hypothesis. In the second case, where (I21 = 0) → Q,
we again have that P is equivalent to Q and P ′ to Q′, so we are done for the same reason. □

Lemma 6.0.7 Let P be a closed proposition and A, B arbitrary propositions. Then P → (A ∨ B) is
equivalent to (P → A) ∨ (P → B).

This captures the idea that closed propositions are not disjunctive, i.e. cannot be partitioned.

Proof The reverse implication is direct. So suppose P → (A∨B). We claim P → (A+B). To see this,
we apply Zariski local choice together with the fact that RP has no Zariski covers (it is essentially a local
ring, being a quotient of R, except we do not know 0 ̸= 1). This determines a map P → Bool, and hence
by composition a map P → R. Again, since RP is a quotient of R, we find one element r : R representing
our function P → Bool. Since R is local, either r or 1− r is invertible. In either case we have an element
of Bool such that the map P → Bool is constantly this element. This means (P → A) + (P → B), as
needed. □
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