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Abstract

These are notes on work in progress on finite schemes in synthetic algebraic geometry.

1 Definition of finite schemes

We use definitions and results from [CCH23] and [Che+23].
There are a couple of equivalent definitions of finite schemes, which we will introduce and show to be

equivalent in this section.

Definition 1.1 A type X is a finite scheme if it is of the form X = SpecA for a finitely presented
R-algebra which is finitely generated as an R-module.

Example 1.2 (a) Finite types

(b) Infinitesimal disks Dk(n) ⊆ An of order k

(c) Closed propositions

Theorem 1.3
Let X = Spec(A) be an affine scheme, then the following are equivalent:
(i) X is a finite scheme.

(ii) A is a finitely presented R-module.

(iii) WIP: There are finitely presented R-algebras B with a surjective homomorphism B → A, A is a
finitely presented R-module and B is finite free as an R-module.

(iv) X is projective.

(v) X is compact.

Proof (i)⇔ (iii): By constructive reading of Tag 0564 in the Stacks Project (TODO: turn into reference).
For generators ei of A, B is defined as R[X1, . . . , Xn]/(P1, . . . , Pn) where Pi are monic polynomials such
that Pi(ei) = 0 in A.

(ii) ⇒ (iv): (The ’same proof’ without the ’finite free’ assumption should work.) Let A be finite free
for now. We consider the projective space PA⋆ associated with the R-linear dual of A. This is Pn−1 after
choosing a basis of A. Given [φ] : PA⋆ we consider the proposition C([φ]) that φ(1)φ(xy) = φ(x)φ(y) for
all x, y : A. This is well-defined and a closed proposition because it suffices to check it for basis elements
of A. C([φ]) implies φ(1) ̸= 0 because otherwise φ(x)2 = 0 for all x : A and then φ is not-not zero
(projective space contains only non-zero vectors). So x 7→ φ(x)/φ(1) determines a point of Spec A for
[φ] : PA⋆ such that C([φ]) holds (and one can go in the reverse direction, and verify that the two maps
are inverse to each other).

(iv) ⇒ (v): Projective schemes are compact by [Che+23, Theorem 3.0.7].
(v) ⇒ (i): (TODO: copy from #6) □

Lemma 1.4 Finite schemes are closed under dependent sums and identity types.

Proof Compact types and affine types are both closed under dependent sums ([Che+23, Lemma 2.0.3]),
so by the characterization in Theorem 1.3, finite schemes are closed under dependent sums. Finite schemes
are affine, so their identity types are closed propositions, which are finite schemes. □
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It is possible to prove that finite schemes are compact without using the compactness of Pn:

Proposition 1.5 Let A be a finitely presented R-algebra. If furthermore A is finitely generated as
an R-module, then X = Spec(A) is compact (in the sense that X-indexed products of opens are open).

Proof Let A = R[X1, . . . , Xk]/(q1, . . . , qt). As A is finitely generated as an R-module, there are monic
polynomials f1, . . . , fk of positive degree such that fℓ(Xℓ) = 0 in A. Hence Spec(A) is a closed subset

of
∏k

ℓ=1 Spec(R[Xℓ]/(fℓ)). As closed subsets of compact sets are compact ([Che+23, Lemma 2.0.3]+closed
propositions are compact) and finite products of compact sets are compact ([Che+23, Lemma 2.0.3]),
we are reduced to the situation that A = R[X]/(f) where f =

∑n
j=0 an−jX

j is a monic polynomial
of positive degree n. In this case X is the set of zeros of f and it suffices to prove: For every finite
list g1, . . . , gm : R[X] of polynomials, the proposition that

∀(u : R).
(
f(u) = 0 ⇒

m∨
i=1

gi(u) ̸= 0
)

(†)

is open. To this end, we consider the polynomial

p(U1, . . . , Un, T ) :=

n∏
j=1

m∑
i=1

gi(Uj)T
i−1.

Regarded as a polynomial in T , its coefficients are symmetric in the Ui. By the fundamental theorem on
symmetric polynomials, there are polynomials h0, . . . , hm : R[A0, . . . , An−1] such that

p(U1, . . . , Un, T ) =

m∑
i=1

hi(e1(U⃗), . . . , en(U⃗))T i−1.

We claim that proposition (†) is equivalent to the disjunction

m∨
i=1

(hi(a1, . . . , an) ̸= 0). (‡)

Assume Proposition (†). As Proposition (‡) is negative and hence double negation stable, we may assume
that f splits into linear factors: f(X) =

∏n
j=1(X − uj). By assumption, for every j ∈ {1, . . . , n} we

have
∨m

i=1(gi(uj) ̸= 0). Hence

1 ∈
n⋂

j=1

(
gi(uj)

)m
i=1

= c
( m∑
i=1

gi(uj)T
i−1

)
= c(p) =

(
hi(a1, . . . , an)

)m
i=1

, (⋆)

so Proposition (‡) holds. Here c refers to the radical content of a polynomial, the radical of the ideal
generated by its coefficients, and the second equality is by [banaschewski-vermeulen:radical].

Conversely, assume Proposition (‡) and let u : R be a zero of f . As the claim that
∨m

i=1(gi(u) ̸= 0)
is double negation stable, we may assume that f splits into linear factors, f(X) =

∏n
j=1(X − uj),

with u1 = u. By (⋆), we have 1 ∈
(
gi(u1)

)m
i=1

as desired. □

2 Quasi-finite schemes

Definition 2.1 A proposition p holds foo-locally if and only if there are numbers a1, . . . , an : R such
that for every partition {1, . . . , n} = I ∪̇ J , if all the ai with i ∈ I are zero and all the aj with j ∈ J are
invertible, then p holds.

Definition 2.2 A scheme is quasi-finite if and only if foo-locally, it is finite.

Example 2.3 (a) Finite schemes are quasi-finite.

(b) Open propositions are quasi-finite.

Proposition 2.4 Finite schemes are quasi-finite and compact.

Proof Compactness is by Proposition 1.5. □

XXX Question: Does the converse hold? Classically it is well-known. Need to check issue #6.
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https://math.stackexchange.com/questions/4674878/does-quasi-finite-and-%C3%A9tale-locally-closed-enough-to-imply-finite
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