Synthetic Finite Schemes

Ingo Blechschmidt, Felix Cherubini, Matthias Hutzler, Hugo Moeneclaey and David Wärn

April 26, 2024

Abstract

These are notes on work in progress on finite schemes in synthetic algebraic geometry.

1 Definition of finite schemes

We use definitions and results from [CCH23] and [Che+23].

There are a couple of equivalent definitions of finite schemes, which we will introduce and show to be equivalent in this section.

Definition 1.1 A type X is a *finite scheme* if it is of the form X = Spec A for a finitely presented R-algebra which is finitely generated as an R-module.

Example 1.2 (a) Finite types

- (b) Infinitesimal disks $\mathbb{D}_k(n) \subseteq \mathbb{A}^n$ of order k
- (c) Closed propositions

Theorem 1.3

Let X = Spec(A) be an affine scheme, then the following are equivalent:

- (i) X is a finite scheme.
- (ii) A is a finitely presented R-module.
- (iii) WIP: There are finitely presented *R*-algebras *B* with a surjective homomorphism $B \to A$, *A* is a finitely presented *R*-module and *B* is finite free as an *R*-module.
- (iv) X is projective.
- (v) X is compact.

Proof (i) \Leftrightarrow (iii): By constructive reading of Tag 0564 in the Stacks Project (TODO: turn into reference). For generators e_i of A, B is defined as $R[X_1, \ldots, X_n]/(P_1, \ldots, P_n)$ where P_i are monic polynomials such that $P_i(e_i) = 0$ in A.

(ii) \Rightarrow (iv): (The 'same proof' without the 'finite free' assumption should work.) Let A be finite free for now. We consider the projective space $\mathbb{P}A^*$ associated with the R-linear dual of A. This is \mathbb{P}^{n-1} after choosing a basis of A. Given $[\varphi] : \mathbb{P}A^*$ we consider the proposition $C([\varphi])$ that $\varphi(1)\varphi(xy) = \varphi(x)\varphi(y)$ for all x, y : A. This is well-defined and a closed proposition because it suffices to check it for basis elements of A. $C([\varphi])$ implies $\varphi(1) \neq 0$ because otherwise $\varphi(x)^2 = 0$ for all x : A and then φ is not-not zero (projective space contains only non-zero vectors). So $x \mapsto \varphi(x)/\varphi(1)$ determines a point of Spec A for $[\varphi] : \mathbb{P}A^*$ such that $C([\varphi])$ holds (and one can go in the reverse direction, and verify that the two maps are inverse to each other).

- (iv) \Rightarrow (v): Projective schemes are compact by [Che+23, Theorem 3.0.7].
- $(v) \Rightarrow (i)$: (TODO: copy from #6)

Lemma 1.4 Finite schemes are closed under dependent sums and identity types.

Proof Compact types and affine types are both closed under dependent sums ([Che+23, Lemma 2.0.3]), so by the characterization in Theorem 1.3, finite schemes are closed under dependent sums. Finite schemes are affine, so their identity types are closed propositions, which are finite schemes. \Box

It is possible to prove that finite schemes are compact without using the compactness of \mathbb{P}^n :

Proposition 1.5 Let A be a finitely presented R-algebra. If furthermore A is finitely generated as an R-module, then X = Spec(A) is compact (in the sense that X-indexed products of opens are open).

Proof Let $A = R[X_1, \ldots, X_k]/(q_1, \ldots, q_t)$. As A is finitely generated as an R-module, there are monic polynomials f_1, \ldots, f_k of positive degree such that $f_\ell(X_\ell) = 0$ in A. Hence Spec(A) is a closed subset of $\prod_{\ell=1}^k \text{Spec}(R[X_\ell]/(f_\ell))$. As closed subsets of compact sets are compact ([Che+23, Lemma 2.0.3]+closed propositions are compact) and finite products of compact sets are compact ([Che+23, Lemma 2.0.3]), we are reduced to the situation that A = R[X]/(f) where $f = \sum_{j=0}^n a_{n-j}X^j$ is a monic polynomial of positive degree n. In this case X is the set of zeros of f and it suffices to prove: For every finite list $g_1, \ldots, g_m : R[X]$ of polynomials, the proposition that

$$\forall (u:R). \left(f(u) = 0 \Rightarrow \bigvee_{i=1}^{m} g_i(u) \neq 0 \right) \tag{\dagger}$$

is open. To this end, we consider the polynomial

$$p(U_1, \dots, U_n, T) := \prod_{j=1}^n \sum_{i=1}^m g_i(U_j) T^{i-1}.$$

Regarded as a polynomial in T, its coefficients are symmetric in the U_i . By the fundamental theorem on symmetric polynomials, there are polynomials $h_0, \ldots, h_m : R[A_0, \ldots, A_{n-1}]$ such that

$$p(U_1, \dots, U_n, T) = \sum_{i=1}^m h_i(e_1(\vec{U}), \dots, e_n(\vec{U}))T^{i-1}$$

We claim that proposition (†) is equivalent to the disjunction

$$\bigvee_{i=1}^{m} (h_i(a_1, \dots, a_n) \neq 0).$$
(‡)

Assume Proposition (†). As Proposition (‡) is negative and hence double negation stable, we may assume that f splits into linear factors: $f(X) = \prod_{j=1}^{n} (X - u_j)$. By assumption, for every $j \in \{1, \ldots, n\}$ we have $\bigvee_{i=1}^{m} (g_i(u_j) \neq 0)$. Hence

$$1 \in \bigcap_{j=1}^{n} \left(g_i(u_j) \right)_{i=1}^{m} = c \left(\sum_{i=1}^{m} g_i(u_j) T^{i-1} \right) = c(p) = \left(h_i(a_1, \dots, a_n) \right)_{i=1}^{m}, \tag{(\star)}$$

so Proposition (\ddagger) holds. Here *c* refers to the radical content of a polynomial, the radical of the ideal generated by its coefficients, and the second equality is by [**banaschewski-vermeulen:radical**].

Conversely, assume Proposition (‡) and let u : R be a zero of f. As the claim that $\bigvee_{i=1}^{m} (g_i(u) \neq 0)$ is double negation stable, we may assume that f splits into linear factors, $f(X) = \prod_{j=1}^{n} (X - u_j)$, with $u_1 = u$. By (*), we have $1 \in (g_i(u_1))_{i=1}^m$ as desired.

2 Quasi-finite schemes

Definition 2.1 A proposition p holds *foo-locally* if and only if there are numbers $a_1, \ldots, a_n : R$ such that for every partition $\{1, \ldots, n\} = I \cup J$, if all the a_i with $i \in I$ are zero and all the a_j with $j \in J$ are invertible, then p holds.

Definition 2.2 A scheme is *quasi-finite* if and only if foo-locally, it is finite.

Example 2.3 (a) Finite schemes are quasi-finite.

(b) Open propositions are quasi-finite.

Proposition 2.4 Finite schemes are quasi-finite and compact.

Proof Compactness is by Proposition 1.5.

XXX Question: Does the converse hold? Classically it is well-known. Need to check issue #6.

Index

finite scheme, 1 foo-locally, 2

quasi-finite, 2

References

- [CCH23] Felix Cherubini, Thierry Coquand, and Matthias Hutzler. A Foundation for Synthetic Algebraic Geometry. 2023. arXiv: 2307.00073 [math.AG]. URL: https://www.felix-cherubini.de/iag.pdf (cit. on p. 1).
- [Che+23] Felix Cherubini et al. Proper Synthetic Schemes. 2023. URL: https://www.felix-cherubini. de/proper.pdf (cit. on pp. 1, 2).