Exercises

???

April 26, 2024

This is the place for exercises in synthetic algebraic geometry.

1 Nullstellensatz

Definition 1.1 Let A be an R-algebra, then we define the nilradical Nil(A) of A as the ideal of nilpotents in A.

Definition 1.2 Let A be an R-algebra, then we define the Jacobson radical Jac(A) of A as the ideal of a: A such that for all b: A we have 1 - ba invertible.

Exercise 1 Prove that for any *R*-algebra *A* we have:

 $\operatorname{Nil}(A) \subset \operatorname{Jac}(A)$

Exercise 2 Prove that we have:

$$\operatorname{Nil}(R) = \operatorname{Jac}(R)$$

Hint: Remember $x \neq 0$ if and only if x is invertible, and $\neg \neg (x = 0)$ if and only if x is nilpotent.

Exercise 3 Prove that for any f.p. algebra A and a : A, we have that:

(i) a is nilpotent if and only if a(x) is nilpotent for all x : Spec(A).

(ii) a is invertible if and only if a(x) is invertible for all x : Spec(A).

Exercise 4 Prove that for any f.p. algebra A, we have that:

$$\operatorname{Nil}(A) = \operatorname{Jac}(A)$$

Hint: Use exercises 2 and 3.

2 Closed dense subtypes

Exercise 1 Let *I* be a f.g. ideal and let *P* be the closed proposition I = 0. Show that we have $\neg \neg P$ if and only if *I* is nilpotent.

Definition 2.1 For any type X, a subtype $P \subset X$ is called dense if for any open subtype $U \subset X$ we have that $U \cap P = \emptyset$ implies $U = \emptyset$

Recall that giving a subtype $P \subset X$ is equivalent to giving a map $X \to \operatorname{Prop}$

Exercise 2 Let X be any type with a closed subtype $C : X \to \text{Closed}$. Show that $C \subset X$ is dense if and only:

$$\prod_{x:X} \neg \neg C(x)$$

Exercise 3 Assume that A is a f.p. algebra and I a f.g. A-ideal. Show that the subscheme:

$$\operatorname{Spec}(A/I) \subset \operatorname{Spec}(A)$$

is closed. Show that it is dense if and only if I is nilpotent.

3 The Zariski lattice

Exercise 1 Show that the canonical map $A[X] \to R[X]^{Sp(A)}$ is an isomorphim

Here are two applications:

Exercise 2: Zariski lattice If A is a ring, one defines (Joyal) the Zariski lattice Zar(A) as the distributive lattice generated by symbols D(a) for a in A and relations:

$$D(0) = 0$$

$$D(1) = 1$$

$$D(a+b) \leq D(a) \lor D(b)$$

$$D(ab) = D(a) \land D(b)$$

(This can be realized as the lattice of radicals of finitely generated ideals.)

Prove that Zar(R), where R is the generic local ring, is the set of open propositions, with D(r) being $r \neq 0$.

If A is a finitely presented R-algebra, prove that the canonical map $Zar(A) \to Zar(R)^{Sp(A)}$ is an isomorphism. Hint: use the surjective map $R[X] \to Zar(R), \ \Sigma r_i X^i \mapsto D(r_0, \ldots, r_n)$ and Zariski local choice.

Definition 3.1 Let A be a ring, e_0, \dots, e_n is a fundamental system of idempotents in A if:

$$e_i^2 = e_i$$

$$e_i e_j = 0 \text{ if } i \neq j$$

$$e_0 + \dots + e_n = 1$$

Exercise 3 Given a fundamental system of idempotents e_0, \dots, e_n in a f.p. algebra A, we have that:

$$\operatorname{Spec}(A) = D(e_0) + \dots + D(e_n)$$

Exercise 4 Given a function $f: Sp(A) \to \mathbb{N}$, show that there exists a fundamental system of idempotents e_0, \dots, e_n in A such that for all $x: \operatorname{Spec}(A)$ we have that $x \in D(e_i)$ if and only if f(x) = i. Hint: Look at the map $Sp(A) \to R[X], x \mapsto X^{f(x)}$, the corresponding polynomial in A[X] will be $\sum_i e_i X^i$.

4 Functions on projective spaces

Exercise 1 Show that any map in:

$$\mathbb{P}^1 \to R$$

is constant.

Hint: Present \mathbb{P}^1 as a pushout $\mathbb{A}^1 \prod_{\mathbb{A}^{\times}} \mathbb{A}^1$, then compute $\mathbb{R}^{\mathbb{P}^1}$ as a pullback.

Exercise 2 Assume given $x, y : \mathbb{P}^n$ such that $x \neq y$. Prove there is a map:

$$\psi: \mathbb{P}^1 \to \mathbb{P}^n$$

such that $\psi([1:0]) = x$ and $\psi([0:1]) = y$.

Exercise 3 Show that any map in:

$$\mathbb{P}^n \to R$$

is constant. Deduce that \mathbb{P}^n is not affine for any n > 0.

Hint: You can prove that for any $x : \mathbb{P}^n$ we have that $x \neq [1:0:0:\cdots:0]$ or $x \neq [0:1:0:\cdots:0]$.

5 Various

The exercises in this section are independent.

Exercise For X an affine scheme, prove that $\neg \neg (x = y)$ if and only if:

$$\prod_{U:X \to \text{Open}} U(x) \to U(y)$$

Same for X any scheme.