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1 Weierstrass Curves

1.1 Definition

We assume the characteristic different from 2 and 3.

Definition 1.1.1 Given a, b : R, we define the standard cubic curve Ea,b as the type of zeros of:

Y 2Z −X3 − aXZ2 − bZ3

in P2, pointed by ∞ = [0 : 1 : 0].

Definition 1.1.2 Given a, b : R we define the discriminant ∆ of Ea,b as:

∆ = 4a3 + 27b2

Definition 1.1.3 A Weierstrass curve is a pointed type (X, ∗) such that there merely exists a, b : R with
∆ ̸= 0 and:

(X, ∗) = (Ea,b,∞)

Lemma 1.1.4 The standard cubic Ea,b curve has an open cover by two affine pieces of the form:

Spec(R[X,Y ]/Y 2 −X3 − aX − b)

and:
Spec(R[X,Z])/Z −X3 − aXZ2 − bZ3)

Proof As a closed subscheme of P2, we know that any standard cubic curve is covered by affines given
by x ̸= 0, y ̸= 0 and z ̸= 0. But since for any [x : y : z] : Ea,b we have that:

y2z − x3 − axz2 − bz3 = 0

we have that:
x ̸= 0 → (y ̸= 0 ∨ z ̸= 0)

so we can conclude. □
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1.2 Connectedness and smoothness for standard cubic curves

Lemma 1.2.1 Standard cubic curves are connected.

Proof By lemma 1.4.2 we know that (Ea,b → R) = R. Then a map from Ea,b to 2 gives an idempotent
in R, which is 0 or 1 by locality of R, and we conclude from this. □

Lemma 1.2.2 A standard cubic curve Ea,b is smooth if and only if ∆ ̸= 0. Then it is of dimension 1.

Proof Assume ∆ ̸= 0. Then by lemma 1.1.4 it is enough to show that:

Spec(R[X,Y ]/Y 2 −X3 − aX − b)

and:
Spec(R[X,Z])/Z −X3 − aXZ2 − bZ3)

are smooth. To do this it is enough to prove that the differential of the defining polynomial is surjective
in both cases:

• When z ̸= 0, we need to prove that for all x, y : R such that:

y2 = x3 + ax+ b

we have that:
(2y ̸= 0) ∨ (3x2 + a ̸= 0)

To do this we can assume:
(2y = 0) ∧ (3x2 + a = 0)

and reach a contradiction by proving ∆ = 0.

• When y ̸= 0, we need to prove that for all x, z : R such that:

z − x3 − axz2 − bz3

we have that:
(3x2 + az2 ̸= 0) ∨ (1− 2axz − 3bz2 ̸= 0)

To do this we can assume:

(3x2 + az2 = 0) ∧ (1− 2axz − 3bz2 = 0)

and reach a contradiction directly (done in Macaulay, not sure it is correct...).
Now let us assume given a smooth Weierstrass curve. Since it is connected we know it has constant
dimension 1 or 2.

• Dimension 2 is not possible, by fixing z ̸= 0 and x = 0 we would get that y2 = b implies y = 0 for
all y : R which is contradictory.

• If it is of dimension 1, then by fixing z ̸= 0 and y = 0, by surjectivity of the differentials we have
that x3 + ax+ b is a separable polynomial. Now we assume ∆ = 0 and reach a contradiction. We
use case distinction on a and b being 0.

If a = b = 0, then we would have x3 separable, a contradiction.

If b ̸= 0 or a ̸= 0 then both holds because ∆ = 0. Then − 3b
2a is a double root of x3 + ax+ b, which

contradicts it being separable. □

Corollary 1.2.3 Weierstrass curves are smooth projective schemes of dimension 1.

1.3 A remark on affine Weierstrass curves

One might be tempted to try to reduce the study of Weierstrass curves to the study of affine schemes of
the form: ∑

x,y:R

y2 = x3 + ax+ b

We indeed have that for any Weierstrass curve (X, ∗), the scheme X −{∗} merely is of this form, indeed
for any [x : y : z] : Ea,b we have that [x : y : z] ̸= [0 : 1 : 0] if and only if z ̸= 0.
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However we do not expect this to be part of an equivalence as the affine versions have infinitesimal
deformations of the identity that are automorphisms, e.g. for any ϵ such that ϵ2 = 0 we have an
automorphism of Ea,b given by:

ϕ : (x, y) 7→ (x+ yϵ, y +
3x2 + a

2
ϵ)

ϕ−1 : (x′, y′) 7→ (x′ − y′ϵ, y′ − 3x′2 + a

2
ϵ)

1.4 Standard cubic curves have cohomological genus 1

Lemma 1.4.1 Let X be a standard cubic curve and M be a wqc module on X. Then Hi(X,M) = 0
when i > 1.

Proof By lemma 1.1.4 and Mayer-Vietoris, with the fact that affine schemes have trivial cohomology
with coefficent in wqc modules. □

Lemma 1.4.2 Let X be a standard cubic curve. Then we have:

H0(X,R) = R

H1(X,R) = R

Proof We can assume X = Ea,b for some a, b : R. By lemma 1.1.4 and Mayer-Vietoris, we have an exact
sequence:

0 → H0(Ea,b, R) →
(

R[X,Y ]

Y 2 −X3 − aX − b
⊕ R[X,Z]

Z −X3 − aXZ2 − bZ3

)
→

(
R[X,Y ]Y

Y 2 −X3 − aX − b

)
→ H1(Ea,b, R) → 0

where the middle map sends:

(P,Q) :
R[X,Y ]

Y 2 −X3 − aX − b
⊕ R[X,Z]

Z −X3 − aXZ2 − bZ3

to:
P (X,Y )−Q(X/Y, 1/Y )

We have countable basis for the modules involved, so the middle map is the map in:

R⟨XkY m⟩0≤k≤2,0≤m ⊕R⟨XkZm⟩0≤k≤2,0≤m → R⟨XkY m⟩0≤k≤2

defined by sending:
XkY m 7→ XkY m

XkZm 7→ −XkY −k−m

So we are in the situation where we have countably free modules M,N,P with M,N ⊂ P and we want
to find the kernel and cokernel of the map:

M ⊕N → P

• The image of this map is precisely the vector space spanned by XkY m when k ̸= 2 or m ̸= −1, so

its cokernel is isomorphic to the space spanned by X2

Y . This means that:

H1(Ea,b, R) = R

• Its kernel is the intersection of both subspaces, which is spanned by 1. This means that:

H0(Ea,b, R) = R □

From H1(X,R) = R, we should get that Weierstrass curves have genus 1 more or less by definition.
We might need the next lemma as well, as we do not know whether smoothness implies flatness.

Lemma 1.4.3 Standard cubic curves are flat. In particular Weierstrass curves are flat.

Proof It is enough to prove that the pieces from lemma 1.1.4 are flat. But both corresponding are free
with a countable basis when seen as modules, so they are flat. □
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1.5 The j-invariant

Beware, the j-invariant as defined below should not determine the iso class of the elliptic curve.

Definition 1.5.1 Given Ea,b a standard Weierstrass curve, we define the the j-invariant by:

j =
(4a)3

∆

Lemma 1.5.2 Consider Ea,b and Ea′,b′ two standard Weiestrass curves. If there exists u : R such that
u ̸= 0 and:

au4 = a′

bu6 = b′

then we have that:

∥Ea,b = Ea′,b′∥

Proof We just define the map:

Ea,b → Ea′,b′

[x : y : z] 7→ [u2x : u3y : z]

and check that it is an isomorphism. □

Remark 1.5.3 We know that Ea,b and Ea′,b′ having the same j-invariant does not imply that such u
exists, indeed:

• Having the same j-invariant is equivalent to a3(b′)2 = (a′)3b2.

• Taking a = a′ = 1 and b′ = 0 we would get that for all b such that b2 = 0, we have an invertible u
with bu6 = 0, i.e. b = 0.

2 Divisors

(This section is preliminary, it is not clear if the notions of divisors presented here are the best we can
do synthetically...)

Weil divisors are an important classical tool. They can be used to describe zero and pole orders at
closed points or other closed subspaces. In the case of curves over a field in classical algebraic geometry
the set of Weil divisors may be defined as the free abelian group over the closed points of the curve.

This is unlikely to be a good way to go synthetically, since it is unclear how to produce actual integers
from, say, a rational function which describe its zero or pole orders. As noted by David Jaz Myers
[Mye19], it is already not possible to define a degree function with values in the natural numbers and one
should therefore pass to upper naturals. We will start by extending Myers’ proposed course of action to
generalized integers which can serve as “coefficients” for Weil divisors and see how we can assign a Weil
divisor to a rational function on a curve.

Following a definition of Weil divisors, we will define Cartier divisors as well and compare the two
notions.

2.1 Generalized Integers

The upper naturals are “increasing” sequences of propositions. They can be thought of as upward closed
subsets of the naturals and a upper natural is called bounded, if it is inhabited as a subset.

Definition 2.1.1 The upper naturals are the following type:

N↓ :≡ (s : N → Prop)× ((n : N) → s(n) → s(n+ 1)) .

An upper natural s : N↓ is called bounded if there exists an n such that s(n) 1. We denote the type of

bounded upper naturals with N↓
b .

1We will suppress the second component of some sigma types here.
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As suggested by Myers’ we can define addition and multiplication via enriched Day convolution. The
latter means, that we view N as a category given by the order and with monoidal structure given by
+ or · and monoidally embedd N into the Prop-valued functors N → Prop. This leads to the following
definitions:

Definition 2.1.2 Let s, s′ : N↓. Then for all n : N we define:

(s+ s′)(n) :≡ ∃(l,k):N2s(l) ∧ s(k) ∧ (l + k ≤ n)

(s · s′)(n) :≡ ∃(l,k):N2s(l) ∧ s(k) ∧ (l · k ≤ n)

One might expect that this inherits the full structure of a semiring from N, but this is only true if
one passes to bounded upper naturals.

Proposition 2.1.3 (a) + and · preserve boundedness of upper naturals.

(b) N↓
b is a commutative semiring with respect to + and · · · .

Proof [Com23] in Cubical/Algebra/CommSemiring/Instances/UpperNat. □

The order ≤ on N is decidable and therefore open. Since + and · only use existence over finite sets and
∧, being pointwise open is preserved by these operations. From this we group complete to get generalized
integers, which we do not really know how to denote yet.

Definition 2.1.4 Let N↓
O,b ⊆ N↓

b be the sub-semiring of pointwise open bounded upper naturals. The gen-

eralized integers are the group completion of N↓
O,b, which is again a commutative semiring and essentially

small. We will denote the generalized integers with ZO.

2.2 Weil divisors and rational functions

We will now aim at definining Weil divisors and start with rational function on a curve. The definition
of curve we will use here is not tested much and therefore preliminary.

Definition 2.2.1 A curve is an irreducible, inhabited, projective scheme C which is smooth of dimension
1.

Definition 2.2.2 The type of rational functions on a type X is the quotient of

K(X) :≡ {(f, U) | U ⊆ X dense open, f : U → R}

by the relation (f, U) ∼ (g, V ) :≡ (f|U∩V = g|U∩V ).

Lemma 2.2.3 Let X be an irreducible scheme.
(a) For any (f, U) : K(X), any point x : X and affine open V containing x, there is a g : V → R such

that (f, U) is equivalent to (fD(g), D(g)) (and D(g) ⊆ U). In other words: Zariski-locally, (f, U) is
of the form (fD(g), D(g))

(b) Any non-zero f : K(X) has a multiplicative inverse.

Proof Let (f, U) : K(X) be a rational function.
If we assume a point x : X contained in a chart V , and note V ∩ U = D(g1, . . . , gl), we have a dense

open D(gi) containing x.
So (f, U) is equivalent to (fD(g), D(g)) for g :≡ gi.
Now let f be non-zero. Without loss of generality we can assume that f is non-zero on all of U , since

by irreducibility of X, the non-empty subset where f ̸= 0 is dense open and the intersection of dense
opens is dense open. But then f is pointwise invertible on U and therefore invertible. □

Lemma 2.2.4 Let X be an irreducible scheme smooth of dimension 1. If U ⊆ X is dense open and
f : U → R non-zero, then for every point P : X, there is a natural k such that f|D(P,k) ̸= 0.

Proof (MISSING, Hope this can be done by knowing it for A1 and moving it around using that a smooth
scheme is a manifold... Alternative: Throw out the boundedness everywhere, the Weil divisors will still
form an abelian group) □

5

https://github.com/agda/cubical/blob/master/Cubical/Algebra/CommSemiring/Instances/UpperNat.agda


Definition 2.2.5 Let X be an inrreducible scheme smooth of dimension 1. Then for a non-zero function
f : X → R and P : X we define the zero-order of f at P to be the bounded (by Lemma 2.2.4) open
upper natural number

np(f) :≡ (k : N) 7→ f|D(P,k+1) ̸= 0.

Lemma 2.2.6 Let X be an inrreducible scheme smooth of dimension 1 and f, g : X → R. Then

nP (f · g) = nP (f) + nP (g)

for all P : X.

Definition 2.2.7 The type of Weil divisors Div(C) on a curve C is the type of functions C → ZO
vanishing on a open dense subset.

Theorem 2.2.8
Let X be an irreducible scheme smooth of dimension 1. Then there is a function div : K(C)× → Div(C)
given locally by:

div(
f

g
)(P ) = nP (f)− nP (g)

And we have:
(i) There is a dense open U ⊆ X such that div(f) = 0.

(ii) div(f · g) = div(f) + div(g).

Proof Let f : K(X)×. The local requirement defines a unique value div(f) by multiplicativity of nP .
(i) This is locally the case since f is of the form h

g and both D(h) and D(g) are dense.

(ii) By multiplicativity of nP . □

2.3 Cartier divisors

Definition 2.3.1 Let X be a type.
(a) A Cartier divisor on X is given by an open cover U1, . . . , Un of X together with rational functions

fi : K(Ui)
× such that there are (uniquely determined) λij : Ui ∩ Uj → R× with λijfi = fj .

(b) Two Cartier divisors (Ui, fi)i and (Vj , gj)j are equal if there are λij : Ui ∩ Vj → R× such that
λijfi = gj . This notion of equality defines a set-quotient Ca(X), the type of Cartier divisors.

Lemma 2.3.2 Let X be a type. Let (Ui, fi)i : Ca(X) and (Vj)j be a an open cover of X. Then
(Ui ∩ Vj , fi|Ui∩Vj

)(i,j) is a Cartier divisor and equal to (Ui, fi)i.

Proof (Ui ∩ Vj)(i,j) is an open cover of X and on (Ui ∩ Vj) ∩ Ul, the λil : Ui ∩ Ul → R× shows that the
restrictions of fi and fl only differ by a unit. □

This means, given a finite list of Cartier divisors, we can assume they are all defined on the same
open covering.

Definition 2.3.3 Let X be a type.
(a) For Cartier divisors (Ui, fi)i and (Ui, gi)i we define the following multiplication:

(Ui, fi)i · (Ui, gi)i :≡ (Ui, fi · gi).

Ca(X) is an abelian group with this multiplication.

(b) A Cartier divisor is called principal if it is of the form (X, f) with f : K(X)×.

(c) The quotient of the group Ca(X) by the subgroup of principal divisors is denoted with CaCl(X)
and called the (Cartier) divisor class group.

Proposition 2.3.4 Let X be a type and D :≡ (Ui, fi)i : CaCl(X). We can define a line bundle LD :
X → Lines, given by the trivial line bundle on each Ui identified using the λij .
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Proof We can use a Krauss-lemma as stated in [CCH23][Lemma 1.2.3], since the λij satisfy the neccessary
cocycle condition. □

(Mapping D to LD should be a group homomorphism with respect to the tensor product of line
bundles. So the map should also descent to divisor classes.)

(Taking div should give a map from Ca(X) to Weil divisors on X)
(Is it possible, for a point P on a curve, to construct a Cartier divisor D such that the line bundle LD

is O(P )? Equivalent question: if for a standard smooth of dimenstion 1 affine scheme X and a point P
in X, we can construct a function on X which is zero at P and non-zero at all points different from P.)
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