
Differential Geometry of Synthetic Schemes

Felix Cherubini1, Matthias Ritter1, Hugo Moeneclaey1 and David Wärn1

1 University of Gothenburg and Chalmers University of Technology

Abstract

Synthetic algebraic geometry is a new approach to algebraic geometry. It consists in using homo-
topy type theory extended with three axioms, together with the interpretation of these in a higher
version of the Zariski topos, in order to do algebraic geometry internally to this topos. In this article
we make no essential use of the higher structure on types, so that we could alternatively use the
traditional Zariski 1-topos.

We give new synthetic definitions of étale, smooth and unramified maps between schemes. We
prove the usual characterizations of these classes of maps in terms of injectivity, surjectivity and
bijectivity of differentials. We also show that the tangent spaces of smooth schemes are finite free
modules. Finally, we show that unramified, étale and smooth schemes can be understood very
concretely, indeed they admit the expected local algebraic description.
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Introduction

In mathematics, it is common practice to assume a fixed set theory, usually with the axiom of choice, as a
common basis. While it is a great advantage to work in one common language and share a lot of the basic
constructions, the dual approach of adapting the “base language” to particular mathematical domains is
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sometimes more concise, provides a new perspective and encourages new proof techniques which would
be hard to find otherwise. We use the word “synthetic” to indicate that the latter approach is used, as
it was used by Kock and Lawvere to describe developement of mathematics internal to certain categories
[Law79], in particular toposes – a program which dates back as far as 1967.

Already in the 70s in the same program, Anders Kock suggested to use the language of higher-order
logic [Chu40] to describe the Zariski topos, the collection of sheaves for the Zariski topology [Koc; KR77],
which is the first occurence of synthetic algebraic geometry. Kock’s approach allowed for a more suggestive
and geometrical description of schemes. There is in particular a “generic local ring” R, which, as a sheaf,
associates to any algebra A its underlying set and, as described in [KR77], the projective space Pn is then
the set of lines in Rn+1.

Just using category theory is not the same as reasoning synthetically – for the latter the goal is usually
to derive results exclusively in one system, as Kock and Lawvere did with differential geometry in his
work. The distinction with just using an abstraction like categories is important, since the translation
from the synthetic language and back can become cumbersome – although it is still the goal to derive
statements about ordinary mathematical objects in the end.

Starting with Kock and Lawvere’s work, more differential geometry was developed synthetically
[Koc06] along with a study of the models of the theory [MR90]. One basic axiom of the theory, called
the Kock-Lawvere axiom, allows for reasoning with nilpotent infinitesimals. Our version of synthetic
algebraic geometry uses a generalisation of this axiom called the duality axiom. Let us now describe the
Kock-Lawvere axiom.

The Kock-Lawvere axiom is added to a basic language which can be interpreted in good enough
categories, for example toposes. More precisely, we need basic objects like ∅, {∗} and N as well as natural
constructions like A×B or AB for objects A, B. These constructions come with data, like the projections
in the case of A × B, satisfying natural laws. We also need predicates P (x) for elements x : A so we
can form subobjects like {x : A | P (x)}. In this language, we assume there is a fixed ring R, which can
be thought of as the real numbers. We define D(1) = {x ∈ R | x2 = 0} to be the set of all square-zero
elements of R, then the Kock-Lawvere axiom gives us a bijection

e : R×R→ RD(1)

which commutes with evaluation at 0 and projection to the first factor. The intuition is that D(1) is so
small that any function on it is linear and therefore determined by its value and its derivative at 0 ∈ D(1).
With this axiom, the derivative at 0 : R of a function f : R→ R may then be defined as π2(e

−1(f|D(1))).
This is the start of a convenient development of differential calculus, which doesn’t require any further
structures on R or other objects. This is the core of the synthetic method: we can work with these
differential spaces as if they were sets.

To give an example, the tangent bundle of a manifold M can be defined as MD(1) and vector fields
as sections of the map MD(1) →M evaluating at 0. Then it is easy to see that a vector field is the same
as a map ζ : D(1) → MM with ζ(0) = idM , which can be interpreted as an infinitesimal transformation
of the identity map. This style of reasoning with spaces as if they were sets is also central in current
synthetic algebraic geometry.

The Kock-Lawvere axiom above are incompatible with the law of excluded middle (LEM) and therefore
also with the axiom of choice (AC). Indeed they imply all maps from say R to R are differentiable, which
contradicts LEM. However restricted versions of LEM and AC are compatible with this axiom. A very
basic example is that equality of natural numbers is decidable, meaning that two natural numbers are
either equal or not equal. We will latter go back to why full LEM and AC tend to be incompatible with
synthetic approach to various geometry.

The use of nilpotent elements to capture infinitesimal quantities as mentioned above was inspired by
the Grothendieck school of algebraic geometry and Anders Kock also worked with an extended axiom
[Koc; KR77] suitable for synthetic algebraic geometry, where the role of D(1) above can be taken by
any finitely presented affine scheme. In his 2017 doctoral thesis, Ingo Blechschmidt noticed a property
holding internally in the Zariski-topos, which he called synthetic quasi-coherence. It is generalised and
internalised version of what Kock used. In 2018, David Jaz Myers1 started working with a specialization
of Blechschmidt’s synthetic quasi-coherence, which is what we now call duality axiom.

To state the duality axiom we need to go from the space D(1) to spaces that are the common zeros
of some finite system of polynomial equations over R. Such a space can be encoded independently of
the choice of polynomials as a finitely presented R-algebra, i.e. an R-algebra A which is of the form

1Myers’ never published on the subject, but communicated his ideas to Felix Cherubini and in talks to a larger audience
[Mye19b; Mye19a].
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R[X1, . . . , Xn]/(P1, . . . , Pl) for some numbers n, l and polynomials Pi ∈ R[X1, . . . , Xn]. Then the set of
roots of the system is given by the type HomR-Alg(A,R) of R-algebra homomorphisms from A to the
base ring. We denote this type by SpecA. Now the duality axiom states that Spec is the inverse to
exponentiating with R, i.e. for all finitely presented R-algebras A the following is an isomorphism:

(a 7→ (φ 7→ φ(a))) : A→ RSpecA.

Myers used homotopy type theory as a base language, which is now the standard in synthetic algebraic
geometry. Now we introduce homotopy type theory, in the next paragraphs we will explain how it fits
with synthetic algebraic geometry. Homotopy type theory is a language for synthetic homotopy theory.
This means that when using it, we can think of the basic objects of the theory, that is types, directly
as homotopy types. This should be contrasted with the usual practice in algebraic topology, which is to
implement these homotopy types as topological spaces or Kan complexes. So the rules of homotopy type
theory allow to work with types in very much the same way as one would work with homotopy types in
traditional mathematics.

On the other hand we also use homotopy type theory because it allows to reason synthetically about
spaces, as plain type theory does. A key point is that we do not use the law of excluded middle (LEM)
or the axiom of choice (AC), which are incompatible with types being interpreted as spaces. Indeed on
one hand LEM allows us to find a complement of each subset of a given type A, which exposes A as a
coproduct. This is not true for spaces, for example, R is not the coproduct of the topological subspaces
{0} and R/{0}. On the other hand AC states that any surjection has a section. This is also not true for
any sensible notion of space, in particular it would trivialise all cohomology. Thus, constructive reasoning
in the sense of not using LEM and AC is a necessity if we want to types to be understood as having a
spatial structure. It turns out that this is the only obstruction, so the rules of type theory allow to work
with type as one would work with spaces in algebraic geometry.

In synthetic algebraic geometry, we work inside homotopy type theory so that types behave both as
homotopy types and as spaces from algebraic geometry. This means that we are mixing two synthetic
approaches, combining their advantages, which rests on the possibility of interpreting homotopy type
theory in any higher topos [Shu19] and not just the higher topos of ∞-groupoids. More precisely we
think of the higher topos of Zariski sheaves with value in homotopy type. The general idea of using
homotopy type theory to combine some kind of synthetic, spatial reasoning with synthetic homotopy
theory, goes back at least to 2014, to Mike Shulman and Urs Schreiber [SS14]. Schreiber suggested to the
HoTT community at various occasions to make use of HoTT as the internal language of higher toposes,
where specifities of the topos are accessed in the language via modalities. This approach was shown to be
quite effective and intuitive in Shulman’s [Shu18] work on mixing synthetic homotopy theory in the form
of HoTT and a synthetic approach to topology using a triple of modalities – a structure called cohesion
by Lawvere [Law07]. A more detailed introduction to homotopy type theory for a general mathematical
audience, with an emphasis on this mix of homotopical and spatial structure can be found in [Shu21].

One of the main advantages of using specifically homotopy type theory and not plain type theory, is
using synthetic homotopical reasoning to make cohomological computations. Indeed one of Schreiber’s
motivation was to make use of the modern perspective on cohomology as the connected components of
a space of maps in a higher topos. This can be mimicked in HoTT as follows: Given X a type, A an
abelian group and n : N, we define the n-th cohomology group of X with coefficients in A as

Hn(X,A) := ∥X → K(A,n)∥0

where ∥ ∥0 is the 0-truncation, an operation which turns any type into a 0-type, that is a type with
trivial higher structure. The type K(A,n) is the n-th Eilenberg MacLane space, which can always be
constructed for any abelian group A and comes with an isomorphism Ωn(K(A,n)) ≃ A. With this
definition of cohomology groups we can use synthetic homotopy theory to reason about cohomology,
which had already been done successfully for the cohomology of homotopy types like spheres and finite
cell complexes. It also works for the cohomology of 0-types such as spaces in synthetic algebraic geometry.
This internal version of cohomology does not agree with the external version mentioned above, indeed it
is a sheaf of groups instead of a single group, and it is indexed by an internal natural number instead of
an external one. Nevertheless, internal cohomology turned out to be quite useful in practice.

In 2022, trying to use this approach to calculate cohomology groups in synthetic algebraic geometry
led to the discovery of what is now called Zariski-local choice [CCH24], which is an additional axiom that
holds in the higher Zariski-topos. It is a weakening of the axiom of choice. In homotopy type theory, the
axiom of choice can be formulated as follows: For any surjective map f : X → Y , there exists a section,
i.e. a map s : Y → X such that f ◦ s = idY . Zariski-local choice also states the existence of a section, but
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only Zariski-locally and only for surjections into an affine scheme: For any surjection f : E → SpecA,
there exists a Zariski-cover U1, . . . , Un of SpecA and maps si : Ui → E such that f(si(x)) = x for all
x ∈ Ui.

In homotopy type theory, we use the propositional truncation ∥ ∥ to define surjections and more
generally what we mean by “exists”. Propositional truncation turns an arbitrary type A into a type
∥A∥ with the property that x = y for all x, y : ∥A∥. Types with this property are called propositions
or (-1)-types in homotopy type theory. Using a univalent universe of types U we have that surjection
into a type A are the same as type families F : A → U , such that we have ∥F (x)∥ for all x : A. Using
type families instead of maps allows us to drop the condition that the maps we get are sections, since
we can express it using dependent function types and we arrive at the formulation of Zariski-local choice
given below in the list of axioms. In this instance and many others, homotopy type theory is much more
convenient for formal reasoning, which is an advantage when formalizing synthetic algebraic geometry.

In total, the system we use for synthetic algebraic geometry consists of the extension of homotopy type
theory postulating a fixed commutative ring R satisfying these three axioms (see below for an explanation
of the first one):

Axiom (Locality)
R is a local ring, i.e. 1 ̸= 0 and whenever x+ y is invertible then x is invertible or y is invertible.

Axiom (Duality)
For any finitely presented R-algebra A, the homomorphism

a 7→ (φ 7→ φ(a)) : A→ (SpecA→ R)

is an isomorphism of R-algebras.

Axiom (Zariski-local choice)
Let A be a finitely presented R-algebra and let B : SpecA → U be a family of inhabited types. Then
there exists a Zariski-cover U1, . . . , Un ⊆ SpecA together with dependent functions si : (x : Ui)→ B(x).

As we explained above the duality axiom is a generalisation of the Kock-Lawvere axiom, which was
used for convenient infinitesimal computations. It has a lot of consequences. In line with classical
algebraic geometry, it shows that we have an anti-equivalence between finitely presented R-algebras and
affine schemes of finite presentation over R. More surprisingly, it implies that all functions in R→ R are
polynomials and that the base ring R has surprisingly strong properties. For example, for all x : R, we
have that x is invertible if and only if we have x ̸= 0.

Surprisingly, the Zariski-local choice axiom was also usable to solve problems which have no obvious
connection to cohomology. For example, it implies that two reasonable definitions of open subsets agree.
In more detail, we can define open subsets using open propositions, which are propositions of the form
r1 ̸= 0 ∨ · · · ∨ rn ̸= 0 where ri : R. A subset U of a type X is open if the proposition x ∈ U is open for
all x : X. Given an open subset U of SpecA, using Zariski-local choice we turn these elements r1, . . . , rn
of the base ring into functions defined Zariski-locally on SpecA. We can then even prove that U is a
union of non-vanishing sets D(fi) of global functions fi : SpecA → R, which is the second candidate
for a definition of open subset alluded to above. An analogous result holds for closed propositionsand
vanishing sets of functions on affine schemes, where closed propositions are propositions of the form
r1 = 0 ∧ · · · ∧ rn = 0 where ri : R.

This connection between pointwise and Zariski-local openness is crucial to make the synthetic defini-
tion of a scheme work well: A scheme is a type X, that merely has a finite open cover by affine schemes.
To produce interesting examples, it is necessary to use the locality axiom. This is related to the Zariski
topology and ensures that classical examples of Zariski covers can be reproduced. A central example
are the projective spaces Pn, which can be defined as the quotients of Rn+1/{0} by the action of R× by
scaling. A cover of Pn is given by sets of equivalence classes of the form {[x0 : · · · : xn]|xi ̸= 0}, which is
clearly open using the pointwise definition. To see that it is a cover, one has to note that for x : Rn+1,
we have that x ̸= 0 is equivalent to one of the entries xi being different from 0. In synthetic algebraic
geometry, this is the case for the base ring R and the proof uses that R is a local ring.

Contribution and organization of the article. We give a novel synthetic definition of formally
étale, smooth and unramified types, using what we call closed dense propositions (Definition 1.1.3). We
then define étale (resp. smooth, unramified) schemes simply as schemes that happens to be formally
étale (resp. smooth, unramified) when seen as types. Étale (resp. smooth, unramified) maps between
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schemes are defined as maps with étale (resp. smooth, unramified) fibers. This is an instance of a general
phenomenon in synthetic reasoning: concepts which are usually defined locally can be defined fiberwise.

While describing the infinitesimal structure of schemes in section 2, we also point out a curious
discovery: there is a duality between finitely presented modules and finitely copresented modules over
the internal base ring R (Lemma 2.3.9 and Corollary 2.3.10). The latter notion of finitely copresented
modules is not very prominent in algebra, but appears naturally in the study of tangent spaces of schemes
(Lemma 2.2.8).

We show that the new definitions agree with a straightforward translations of the classical concepts
(Remark 1.4.2) and provide some characterizations using tangent spaces: a map between schemes is
unramified if and only if it induces injections on tangent spaces (Proposition 3.2.1), and a map between
smooth schemes is étale (resp. smooth) if and only if it induces isomorphisms (resp. surjections) on
tangent spaces (Corollaries 4.1.1 and 4.1.2).

Finally, we show that unramified, étale and smooth schemes can be described very concretely in the
expected way, via conditions on the polynomials locally describing such schemes (Proposition 3.3.3 and
Lemmas 4.3.3 and 4.3.4). An important intermediate result for the characterization of smooth schemes
is that their tangent spaces are finite free R-modules (Proposition 4.2.4).

Acknowledgements. We thank Thierry Coquand for discussions on the topic and in particular for
explaining a proof of Lemma 2.3.8 to us. We thank Marc Nieper-Wißkirchen for a discussion which led
to the explanation at the beginning of Section 2.2. Work on this article was supported by the ForCUTT
project, ERC advanced grant 101053291.

1 Formally étale, unramified and smooth types

In this section we will give our new synthetic definitions of formally étale, formally unramified and
formally smooth types and maps. It is remarkable that these definitions work for any type or map rather
than just scheme and map between them. Here we will derive consequences of these definition applicable
for all types, as well as compare these definitions to the traditional ones.

1.1 Definitions

In [CCH24] it is shown that elements of the base ring R are nilpotent if and only if they are not not zero.
Both nilpotency and double negated equality have been used to describe infinitesimals and the following
closed dense propositions can be viewed as closed subspaces of the point which are infinitesimally close
to being the whole point:

Definition 1.1.1 A closed proposition is dense if it is merely of the form:

r1 = 0 ∧ · · · ∧ rn = 0

with r1, · · · , rn : R nilpotent.

Remark 1.1.2 A closed proposition P is closed dense if and only if ¬¬P .

From a traditional perspective, the inclusion P ⊆ 1 of a closed dense proposition into the point would
be an infinitesimal extension. In the following, we will use closed dense propositions to define synthetic
analogs of notions which are traditionally defined using lifting properties against classes of infinitesimal
extensions. More details on the connection to traditional definitions will be given in Remark 1.4.2.

Definition 1.1.3 A type X is formally étale (resp. formally unramified, formally smooth) if for all closed
dense proposition P the map:

X → XP

is an equivalence (resp. an embedding, surjective).

Remark 1.1.4 The map X → XP is an equivalence (resp. an embedding, surjective) if and only if for
any map P → X we have a unique (resp. at most one, merely one) dotted lift in:
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P X

1

Definition 1.1.5 A map is said to be formally étale (resp. formally unramified, formally smooth) if its
fibers are formally étale (resp. formally unramified, formally smooth).

Remark 1.1.6 A type (or map) is formally étale if and only if it is formally unramified and formally
smooth.

Lemma 1.1.7 A type X is formally étale (resp. formally unramified, formally smooth) if and only if for
all ϵ : R such that ϵ2 = 0, the map:

X → Xϵ=0

is an equivalence (resp. an embedding, surjective).

Proof The direct direction is obvious as ϵ = 0 is closed dense when ϵ2 = 0.
For the converse, assume P = Spec(R/N) a closed dense proposition. Then the map R→ R/N with

N finitely generated nilpotent ideal can be decomposed as:

R→ A1 → · · ·An = R/N

where Ak is a quotient of R by a finitely generated nilpotent ideal and:

Ak → Ak+1

is of the form:
A→ A/(a)

for some a : A with a2 = 0.
We write Pk = Spec(Ak) and:

ik : Pk+1 → Pk

so that fibik(x) is a(x) = 0 where a(x)2 = 0 holds.
Then by hypothesis we have that for all k and x : Pk the map:

X → Xfibik
(x)

is an equivalence (resp. an embedding, surjective). So the map:

XPk →
∏
x:Pk

Xfibik
(x) = XPk+1

is an equivalence (resp. an embedding, surjective, where surjectivity uses Pk having choice). We conclude
that the map:

X → XP

is an equivalence (resp. an embedding, surjective). □

1.2 Stability results

Being formally étale is a modality given as nullification at all dense closed propostions and therefore lex
[RSS20, Corollary 3.12]. This means that we have the following:

Proposition 1.2.1 Formally étale types enjoy the following stability results:
• If X is any type and for all x : X we have Yx formally étale, then

∏
x:X Yx is formally étale.

• If X is formally étale and for all x : X we have Yx formally étale, then
∑

x:X Yx is formally étale.

• If X is formally étale then for all x, y : X the type x = y is formally étale.

• The type of formally étale types is itself formally étale.
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Formally unramified type are the separated types [Chr+20, Definition 2.13] associated to formally
étale types. This means:

Lemma 1.2.2 A type X is formally unramified if and only if for all x, y : X the type x = y is formally
étale.

By [Chr+20, Lemma 2.15], being formally unramified is a nullification modality as well. This means
we have the following:

Proposition 1.2.3 Formally unramified types enjoy the following stability results:
• If X is any type and for all x : X we have Yx formally unramified, then

∏
x:X Yx is formally

unramified.

• If X is formally unramified and for all x : X we have Yx formally unramified, then
∑

x:X Yx is
formally unramified.

Being formally smooth is not a modality, indeed we will see it is not stable under identity types.
Neverthless we have the following results:

Lemma 1.2.4 Formally smooth types enjoy the following stability results:
• If X is any type satifying choice and for all x : X we have Yx formally smooth, then

∏
x:X Yx is

formally smooth.

• If X is a formally smooth type and for all x : X we have Yx formally smooth, then
∑

x:X Yx is
formally smooth.

1.3 Type-theoretic examples

The next proposition implies that open propositions, and therefore open embeddings, are formally étale.

Lemma 1.3.1 Any ¬¬-stable proposition is formally étale.

Proof Assume U is a ¬¬-stable proposition. For U to be formally étale it is enough to check that
UP → U for all P closed dense. This holds because for P closed dense we have ¬¬P . □

Before proving the next lemma about closed formally étale propositions, we will state and prove a
general fact about closed propositions:

Lemma 1.3.2 Let I be a finitely generated ideal of R such that I2 = 0 implies I = 0. Then the closed
proposition I = 0 is decidable.

Proof Let I ⊆ R be a finitely generated ideal such that I2 = 0 implies I = 0. Since the other implication
always holds, the propositions I2 = 0 and I = 0 are equivalent, so we have I = I2. By Nakayama (see
[LQ15, Lemma II.4.6]) there exists e : R such that eI = 0 and 1− e ∈ I. If e is invertible then I = 0, if
1− e in invertible then I = R. □

Lemma 1.3.3 Any formally étale closed proposition is decidable.

Proof Given a formally étale closed proposition P , let us prove it is ¬¬-stable. Indeed if ¬¬P then P
is closed dense so that P → P implies P since P is formally étale.

Let I be the finitely generated ideal in R such that:

P ↔ I = 0

We have that I2 = 0 implies ¬¬(I = 0) which implies I = 0. Then P is decidable by Lemma 1.3.2. □

Proposition 1.3.4 The type Bool is formally étale.

Proof The identity types in Bool are decidable so Bool is formally unramified. Consider ϵ : R such that
ϵ2 = 0 and a map:

ϵ = 0→ Bool

we want to merely factor it through 1.
Since Bool ⊆ R, by duality the map gives f : R/(ϵ) such that f2 = f . Since R/(ϵ) is local we conclude

that f = 1 or f = 0 and so the map has constant value 0 : Bool or 1 : Bool. □

7



Remark 1.3.5 This means that formally étale (resp. formally unramified, formally smooth) types are
stable by finite sums. In particular finite types are formally étale.

Proposition 1.3.6 The type N is formally étale.

Proof Identity types in N are decidable so N is formally unramified, we want to show it is formally
smooth. Assume given a map:

P → N

for P a closed dense proposition, we want to show it merely factors through 1. By boundedness the map
merely factors through a finite type, which is formally étale by Remark 1.3.5 so we can conclude. □

Lemma 1.3.7 Any proposition is formally unramified.

This means that any subtype of a formally unramified type is formally unramified.

Remark 1.3.8 Given any lex modality, a type is separated if and only if it is a subtype of a modal type,
so a type is formally unramified if and only if it is a subtype of a formally étale type.

We also have the following surprising dual result, meaning that any quotient of a formally smooth
type is formally smooth:

Proposition 1.3.9 If X is formally smooth and p : X ↠ Y surjective, then Y is formally smooth.

Proof For any P closed dense and any map P → Y , consider the diagram:

P Y

1 Xx

p

By choice for closed propositions we merely get the dotted diagonal, and since X is formally smooth we
get the dotted x, and then p(x) gives a lift. □

1.4 Classical definitions, examples and counter-examples

In this section we will show that our definition of étale, smooth and unramified maps between schemes
is equivalent to the obvious internal version of the traditional definition. It is important to keep in mind
that our schemes are always locally of finite presentation, so the following definition is sensible:

Definition 1.4.1 An étale (resp. unramified, smooth) scheme is a scheme which is formally étale (resp.
formally unramified, formally smooth) as a type. An étale (resp. unramified, smooth) map is a map
between schemes which is formally étale (resp. formally unramified, formally smooth).

A criterion very similar to next remark appears as the definition of a formally étale, unramified and
smooth maps in [EGAIV4, §17], except we restrict to finitely presented algebras and finitely generated
ideals, as our schemes are assumed locally of finite presentation, and we ask the lift for smoothness
to exists only Zariski-locally, as suggested in [Sta, Tag 02GZ]. It is not clear if this internal criterion
corresponds to the external definitions.

Remark 1.4.2 Let f : X → Y be a map between schemes. Then f is étale (resp. unramified, smooth)
if and only if there exists exactly one (resp. at most one, at least one Zariski-locally) dotted lift in all
squares of the form:

Spec(A/N) X

Spec(A) Y

t

f

b

where A is a finitely presented R-algebra, N a finitely generated nilpotent ideal and the left map is
induced by the quotient map A→ A/N . In the smooth case, we believe that it is possible to prove global
existence of these lifts using cohmological methods.
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Proof The inclusion of a closed dense proposition P into 1 is a special case of left map in the remark, so
we only need to show that étale, smooth and unramified maps satisfy the more general lifting property.
For étale and unramified maps, we can just apply the lifting property for closed dense propositions for
all points in SpecA. So let f : X → Y be smooth. Then we merely have a lift for each point in Spec(A)
and can apply Zariski-local choice to get the desired result. □

We conclude this section with a few examples and counter examples.

Lemma 1.4.3 For all k : N, we have that Ak is smooth.

Proof Let P be a closed dense proposition and N a nilpotent, finitely generated ideal such that P =
Spec(R/N). Since Spec(R[X1, . . . , Xk]) = Ak, to prove Ak smooth we just need to find dotted lifts in:

R/N R[X1, . . . , Xk]

R

This is easy using the universal property of R[X1, . . . , Xk]. □

Example 1.4.4 The affine scheme Spec(R[X]/X2) is not smooth.

Proof If it were smooth, then for any ϵ with ϵ3 = 0 we would be able to prove ϵ2 = 0. Indeed we would
merely have a dotted lift in:

R/(ϵ2) R[X]/(X2)

R

ϵ

that is, an r : R such that (ϵ+ rϵ2)2 = 0. Then ϵ2 = 0. □

Example 1.4.5 The affine scheme Spec(R[X,Y ]/XY ) is not smooth.

Proof Again, we assume a lift for any ϵ with ϵ3 = 0:

R/(ϵ2) R[X,Y ]/(XY )

R

where the top map sends both X and Y to ϵ. Then we have r, r′ : R such that (ϵ+ rϵ2)(ϵ+ r′ϵ2) = 0 so
that ϵ2 = 0. □

We will proof a generalization of the following example in Lemma 4.3.3. The essential step is to
improve a zero g(y) = 0 up to some square-zero ϵ to an actual zero.

Example 1.4.6 Let g be a polynomial in R[X] such that for all x : R we have that g(x) = 0 implies
g′(x) ̸= 0. Then Spec(R[X]/g) is étale.

1.5 Being formally étale, unramified or smooth is Zariski local

Lemma 1.5.1 Let X be a type with (Ui)i:I a finite open cover of X. Then X is formally étale (resp. for-
mally unramified, formally smooth) if and only if all the Ui are formally étale (resp. formally unramified,
formally smooth).

Proof First, we show this for formally unramified:
• Any subtype of a formally unramified type is formally unramified by Lemma 1.3.7, so X formally
unramified implies Ui formally unramified.

• Conversely, is each Ui is formally unramified, then for all x, y : X we need to prove x =X y formally
étale. But there exists i : I such that x ∈ Ui and then:

x =X y ↔
∑
y∈Ui

x =Ui y

which is formally étale because open propositions are formally étale by Lemma 1.3.1.
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Now for formally smooth:

• Open propositions are formally smooth by Lemma 1.3.1 so that open subtypes of formally smooth
types are formally smooth.

• Conversely if each Ui is formally smooth then Σi:IUi is formally smooth by Remark 1.3.5, so we can
conclude that X is formally smooth by applying Proposition 1.3.9 to the surjection Σi:IUi ↠ X.

The result for formally étale immediately follows. □

Corollary 1.5.2 For all k : N, the projective space Pk is smooth.

Proof By Lemma 1.5.1 it is enough to check that Ak is smooth. This is Lemma 1.4.3 □

2 Linear algebra and tangent spaces

In the context of this article these section contains auxiliary definitions and results, although they can
be interesting in their own right. They focus on how tangent (resp. cotangent) spaces work for schemes,
in this process we give general results about finitely copresented (resp. finitely presented) modules. Of
particular interest is the duality between these two class of modules.

2.1 Modules and infinitesimal disks

The most basic infinitesimal schemes are the first order neighbourhoods in affine n-space Rn. Their
algebra of functions is Rn+1, which is an instance of the more general construction below.

For any R-module M , there is an R-algebra structure on R⊕M with multiplication given by:

(r,m)(r′,m′) = (rr′, rm′ + r′m)

Algebras of this form are called square zero extensions of R, since products of the form (0,m)(0, n) are
zero. By this property, for any R-linear map φ : M → N between modules M,N , the map id ⊕ φ :
R⊕M → R⊕N is an R-algebra homomorphism. In particular, if M is finitely presented, i.e. merely the
cokernel of some p : Rn → Rm then R ⊕M is the cokernel of a map between finitely presented algebras
and therefore finitely presented as an algebra.

Definition 2.1.1 GivenM a finitely presented R-module, we define a finitely presented algebra structure
on R⊕M as above and define:

D(M) = Spec(R⊕M)

This is a pointed scheme by the first projection which we denote 0 and the construction is functorial by
the discussion above.

We write D(n) for D(Rn) so that for example:

D(1) = Spec(R[X]/(X2)) = {ϵ : R | ϵ2 = 0}

Definition 2.1.2 Assume given M a finitely presented R-module and A a finitely presented R-algebra
with x : Spec(A). An M -derivation at x is a morphism of R-modules:

d : A→M

such that for all a, b : A we have that:

d(ab) = a(x)d(b) + b(x)d(a)

Lemma 2.1.3 Assume given M a finitely presented module and A a finitely presented algebra with
x : Spec(A). Pointed maps:

D(M)→pt (Spec(A), x)

correspond to M -derivations at x.
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Proof Such a pointed map correponds to an algebra map:

f : A→ R⊕M

where the composite with the first projection is x. This means that, for some module map d : A → M
we have:

f(a) = (a(x), d(a))

We can immediately see that f being a map of R-algebras is equivalent to d being an M -derivation at
x. □

Lemma 2.1.4 Let M , N be finitely presented modules. Then linear maps from M to N correspond to
pointed maps from D(N) to D(M).

Proof By Lemma 2.1.3 such a pointed map corresponds to an N -derivation at 0 : D(M).
Such a derivation is a morphism of modules:

d : R⊕M → N

such that for all (r,m), (r′,m′) : R⊕M we have that:

d(rr′, rm′ + r′m) = rd(r′,m′) + r′d(r,m)

This implies d(r, 0) = 0 for all r : R, so such a map is entirely determined by the linear map m 7→ d(0,m).
Conversly given a linear map f : M → N we can check that (r,m) 7→ f(m) is such a derivation, giving
the correspondence. □

2.2 Tangent spaces

In traditional algebraic geometry, the tangent sheaf is defined as the dual of the cotangent sheaf which is
given Zariski locally by the universal module of derivations. We could copy this approach synthetically,
but contrary to the traditional picture, we can also define the tangent bundle directly and dualize to
get the usual cotangent bundle. This mismatch with the traditional theory comes from the fact that the
traditional dualization of OX -module sheaves is not the same as our dualization of R-module bundles.

We start with the definition of tangent spaces which is also used in synthetic differential geometry:

Definition 2.2.1 Let X be a type with x : X, then we define the tangent space Tx(X) of X at x by:

Tx(X) = {t : D(1)→ X | t(0) = x}

Definition 2.2.2 Given f : X → Y and x : X we have a map:

dfx : Tx(X)→ Tf(x)(Y )

induced by post-composition.

Lemma 2.2.3 For all x : Rn we have Tx(R
n) = Rn.

Proof Since Rn is homogeneous we can assume x = 0. By Lemma 2.1.3 we know that T0(R
n) corresponds

to the type of linear maps
R[X1, · · · , Xn]→ R

such that for all P,Q we have:
d(PQ) = P (0)dQ+Q(0)dP

which is equivalent to d(1) = 0 and d(XiXj) = 0, so any such map is determined by its image on the Xi

so it is equivalent to an element of Rn. □

Lemma 2.2.4 Given a scheme X with x : X and v, w : Tx(X), there exists a unique:

ψv,w : D(2)→pt X

such that for all ϵ : D(1) we have that:
ψv,w(ϵ, 0) = v(ϵ)

ψv,w(0, ϵ) = w(ϵ)
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Proof We can assume X is affine. Then D(2) →pt X is equivalent to the type of R2-derivations at x,
but giving an M ⊕N -derivation is equivalent to giving an M -derivation and an N -derivation. Checking
the equalities is a routine computation. □

Lemma 2.2.5 For any scheme X and x : X, we have that Tx(X) is a module.

Proof We could give a conceptual proof similar to [Mye22, Theorem 4.2.19]. Instead we give a more
explicit proof with less technical prerequisites.

We define scalar multiplication by sending v to t 7→ v(rt). Then for addition of v, w : Tx(X), we
define:

(v + w)(ϵ) = ψv,w(ϵ, ϵ)

where ψv,w is defined in Lemma 2.2.4. We omit checking that this is a module structure. □

Lemma 2.2.6 For f : X → Y a map between schemes, for all x : X the map dfx is a map of R-modules.

Proof Commutation with scalar multiplication is immediate. Commutation with addition comes by
applying uniqueness from Lemma 2.2.4 to get:

f ◦ ψv,w = ψf◦v,f◦w □

Lemma 2.2.7 For any map f : X → Y and x : X, we have that:

Ker(dfx) = T(x,reflf(x))(fibf (f(x)))

Proof Indeed we have that fibf (f(x)) pointed by (x, reflf(x)) is the pullback of:

(X,x)→ (Y, f(x))← (1, ∗)

in pointed types, and we conclude by exponentiating with (D(1), 0). □

Lemma 2.2.8 Let X be a scheme with x : X. Then Tx(X) is a finitely copresented R-module.

Proof We can assume X affine. For some map P : Rm → Rn we have X = fibP (0). By applying
Lemma 2.2.7 we know that Tx(X) is the kernel of dPx : Tx(R

m)→ T0(R
n) for all x : X. We conclude by

Lemma 2.2.3. □

Corollary 2.2.9 Let X be a scheme, then the tangent bundle XD(1) is a scheme.

Proof We give two proofs, the first uses Lemma 2.2.8 and the second is a direct computation:
(i) Any finitely copresented modules is a scheme, indeed it is the set of common zeros of linear functions

between finite free modules. So by Lemma 2.2.8, all tangent spaces Tx(X) are schemes and:

XD(1) =
∑
x:X

Tx(X)

is a dependent sum of schemes and therefore a scheme.

(ii) Let X be covered by open affine U1, . . . , Un then U
D(1)
1 , . . . , U

D(1)
n is an open cover of XD(1). Indeed

given f : XD(1), by double negation stability of opens we have that f ∈ U
D(1)
i if and only if

f(0) ∈ Ui. So we conclude by showing that for any affine Y = SpecR[X1, . . . , Xn]/(f1, . . . , fl) the
tangent bundle Y D(1) is affine by direct computation:

Y D(1) = HomR-Alg(R[X1, . . . , Xn]/(f1, . . . , fl), R⊕ ϵR)
= {(y1, . . . , yn) : R⊕ ϵR | ∀i. fi(y1, . . . , yn) = 0}

= {(x1, . . . , xn, d1, . . . , dn) : R2n | ∀i. fi(x1, . . . , xn) = 0 and
∑
j

dj
∂fi
∂Xj

(x1, . . . , xn) = 0}□

Now we want to define cotangent spaces.

Definition 2.2.10 For M an R-module, we denote its dual HomR(M,R) by M⋆.
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Definition 2.2.11 For X a type with x : X, the cotangent space of X at x is the dual T ⋆
x (X) of the

tangent space Tx(X).

If X is a scheme, then by lemma 2.2.8 the cotangent spaces of X are finitely presented. We will
not use the following definition and remark in the rest of this article, but we included them to show the
connection with the traditional theory (see [Har77, p. 172] or [Vak, p. 573]).

Definition 2.2.12 For A an R-module, there is a universal derivation d : A→ ΩA/R. Elements of ΩA/R

are called Kähler differentials.

More precisely, ΩA/R is generated as an A-module by symbols df for f : A, subject to the relations
d(r · f) = r · df for r : R and d(fg) = f · dg + g · df . It can be seen that if A is finitely presented as
an R-algebra, then ΩA/R is finitely presented as an A-module. Traditionally, the sheaf corresponding to
ΩA/R is the cotangent bundle. Synthetically, it is enough to show this pointwise on Spec(A) by [CCH24,
Theorem 8.2.3]. To apply this theorem, we first turn ΩA/R into an R-module bundle on Spec(A) by
sending x : SpecA to ΩA/R,x the type of R-derivations at x, as defined in Definition 2.1.2. This agrees
with tensoring ΩA/R with R using the evaluation at x, which is the general construction used in [CCH24,
Theorem 8.2.3].

Remark 2.2.13 For all x : SpecA, we have ΩA/R,x = T ⋆
x (X) and therefore ΩA/R =

∏
x:SpecA T

⋆
x (X).

Proof We need to show that for x : X, we have an isomorphism of R-modules:

T ⋆
x (X) = ΩA/R,x = ΩA/R ⊗A R

By Lemma 2.1.3 the tangent space Tx(X) corresponds to derivations A → R, where the A-module
structure on R is obtained by evaluating at x. By the universal property of Kähler differentials, these
derivations correspond to A-module maps ΩA/R → R, or equivalently to elements in (ΩA/R ⊗A R)

⋆. In
Corollary 2.3.10, we will see that M⋆⋆ = M for finitely presented R-modules M , so we can conclude by
dualizing. □

2.3 Infinitesimal neighbourhoods

Definition 2.3.1 Let X be a set with x : X. The first order neighborhood N1(x) is defined as the set of
y : X such that there exists a finitely generated ideal I ⊆ R with I2 = 0 and:

I = 0→ x = y

Lemma 2.3.2 Assume x, y : Rn, then x ∈ N1(y) if and only if the ideal generated by the xi− yi squares
to zero.

Proof Let us denote I the ideal generated by the xi − yi so that x = y if and only if I = 0.
If I2 = 0 then it is clear that y ∈ N1(x).
Conversely if y ∈ N1(x) then there is J such that J2 = 0 and J = 0 → I = 0. Then by duality we

have that I ⊂ J so that I2 = 0. □

Lemma 2.3.3 Let X be a scheme with x : X. Then N1(x) is an affine scheme.

Proof If x ∈ U open in X, we have that N1(x) ⊂ U so that we can assume X affine. This means X is
a closed subscheme C ⊂ Rn. Then by Lemma 2.3.2, we have that N1(x) is the type of y : Rn such that
y ∈ C and for all i, j we have that (xi − yi)(xj − yj) = 0, which is a closed subset of C so it is an affine
scheme. □

Definition 2.3.4 A pointed scheme (X, ∗) is called a first order (infinitesimal) disk if for all x : X we
have x ∈ N1(∗).

Lemma 2.3.5 N1 extends to a functor from pointed schemes to first order disks.

Proof It is clear that N1 is functorial, as it is clear that y ∈ N1(x) implies f(y) ∈ N1(f(x)) from the
definition of N1. Now we just need to check that for X a scheme with x : X, we have that (N1(x), x) is a
first order disk. Then N1(x) is a disk by Lemma 2.3.3, and it is clear that the first order neighbourhood
of x in N1(x)) is the whole type N1(x). □
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Lemma 2.3.6 A pointed scheme (X, ∗) is a first order disk if and only if there exists a finitely presented
module M such that:

(X, ∗) = (D(M), 0)

Proof First we check that for all M finitely presented and y : D(M) we have that y ∈ N1(0). Let
m1, · · · ,mk be generators of M , then consider d : M → R induced by y, then y = 0 if and only if d = 0
and for all i, j we have that:

d(mi)d(mj) = 0

This means that I = (d(m1), · · · , d(mk)) has square 0 and I = 0 implies y = 0 so that y ∈ N1(0).
For the converse we assume X a first order disk, by Lemma 2.3.3 we have that X is affine and pointed,

up to translation we can assume X is a closed subset X ⊂ Rn pointed by 0. Since X is a first order disk
we have that X ⊂ N1(0) and by Lemma 2.3.2 we have N1(0) = D(Rn).

This means there is a finitely generated ideal J in R ⊕ Rn such that X = Spec(R ⊕ Rn/J). But 0
corresponds to the first projection from R ⊕ Rn, so that 0 ∈ X means that if (x, y) ∈ J then x = 0, so
that J corresponds uniquely to a finitely generated sub-module K of Rn and:

X = Spec(R⊕ (Rn/K)) = D(Rn/K) □

Now we want to study the duality between finitely presented and finitely copresented modules. While
it is clear that the dual of a finite presentation yields a finite copresentation, the reverse is not true in
general, but we will show in Lemma 2.3.9 that it is a consequence of the duality axiom. First we need
the following two extension results.

Lemma 2.3.7 Let M ⊆ Rn be the kernel of a linear map between finite free R-modules. Then any
linear map M → R can be extended to Rn.

Proof First note that M is affine of the form Spec(R[X1, . . . , Xn]/(l1, . . . , lm)) with li linear. Let
L : M → R be linear. Let P : Rn → R be given by taking a preimage of L under the quo-
tient map R[X1, . . . , Xn] → R[X1, . . . , Xn]/(l1, . . . , lm). By construction, we have P|M = L. Let

P =
∑

σ:N{1,...,n} aσX
σ(1)
1 · · ·Xσ(n)

n . Now we can conclude by showing that the linear part of P

K :≡
∑

σ:N{1,...,n},
∑

σ=1

aσX
σ(1)
1 · · ·Xσ(n)

n

extends L as well, i.e. we will see K|M = L.
For all x :M and λ : R we have L(λx) = λL(x) and therefore∑

σ:N{1,...,n}

λ
∑

σaσx
σ(1)
1 · · ·xσ(n)n = λ

∑
σ:N{1,...,n}

aσx
σ(1)
1 · · ·xσ(n)n

By comparing coefficients as polynomials in λ, we have
∑

σ:N{1,...,n},
∑

σ ̸=1 aσx
σ(1)
1 · · ·xσ(n)n = 0, which

shows K|M = P|M = L. □

Lemma 2.3.8 Let φ : Rn → Rm be R-linear, then any linear map im(φ)→ R on the image of φ can be
extended to Rm.

Proof 2 Let (ai,j) be the coefficients of the matrix representing φ with respect to the standard basis,
and let us denote the column (ai,j)1≤i≤m by Aj . Then the image of φ is generated by these columns:

im(φ) =
{
Σn

j=1xjAj | ∀j . xj : R
}

Let L : im(φ) → R be R-linear and lj :≡ L(Aj). Applying L to a general element of im(φ) and using
linearity yields the following implication:

n∑
j=1

xjAj = 0⇒
n∑

j=1

xj lj = 0

2This proof is due to Thierry Coquand.
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The left side being 0 means thatm linear polynomials Pi(x1, . . . , xn) =
∑n

j=1 xjaij vanish simultaneously.
Let Q(x1, . . . , xn) be the linear polynomial on the right side of the implication. Then by duality the im-
plication induces an inclusion of ideals (Q) ⊆ (P1, . . . , Pm) in R[X1, . . . , Xn]. So there bi : R[X1, . . . , Xn]
such that

Q =

m∑
i=1

biPi

□

By comparing coefficients it is clear that the bi can be chosen to be in R, which we now assume.
We define a R-linear map K : Rm → R by (y1, . . . , ym) 7→

∑m
i=1 biyi. K extends L:

K

 n∑
j=1

xjAj

 =

m∑
i=1

bi

n∑
j=1

xjaij

=

m∑
i=1

biPi(x1, . . . , xn)

= Q(x1, . . . , xn)

=

n∑
j=1

xj lj

= L

 n∑
j=1

xjAj


Lemma 2.3.9 Let M be finitely copresented, i.e. let there be an exact sequence

0 M Rn Rmφ P

Then the dual of this sequence is exact as well. In particular, M⋆ is finitely presented.

Proof Surjectivity of φ⋆ follows from Lemma 2.3.7. Linear maps Rn → R which vanish on M factor
through the image of P , so exactness at the middle of the dual sequence follows from Lemma 2.3.8. □

Corollary 2.3.10 For any module M finitely presented or finitely copresented, we have that M⋆⋆ =M .

Lemma 2.3.11 The functor M 7→ D(M⋆) from finitely copresented modules to first order disks is an
equivalence with inverse (X,x) 7→ Tx(X).

Proof It is fully faithful by Lemma 2.1.4 and essentially surjective by Lemma 2.3.6. To check for the
inverse it is enough to check that T0(D(M⋆)) =M . But by Lemma 2.1.4 we have that:

T0(D(M⋆)) = (D(1)→pt D(M⋆)) =M⋆⋆

and we conclude by Corollary 2.3.10. □

Lemma 2.3.12 Let X be a scheme with x : X, then we have that N1(x) = D(Tx(X)⋆).

Proof By Lemma 2.3.5 we have that (N1(x), x) is a first order disk. By Lemma 2.3.11 it is enough to
check that Tx(N1(x)) = T0(D(Tx(X)⋆)).

It is immediate that any map f : D(1) → X uniquely factors through N1(f(0)) so that Tx(N1(x)) =
Tx(X), and we have that T0(D(Tx(X)⋆)) = Tx(X) by Lemma 2.3.11. □

2.4 Projectivity of finitely copresented modules

Finitely copresented R-modules are projective objects in the category of finitely copresented R-modules,
which means that all surjections between finitely copresented R-modules split.

Lemma 2.4.1 Let M be a finitely copresented module, then we have that T0(M) =M .

Proof We have that M is the kernel of a linear map P : Rm → Rn. By Lemma 2.2.7 we have that
T0(M) is the kernel of:

dP0 : T0(R
m)→ T0(R

n)

but by Lemma 2.2.3 this is a map from Rm to Rn, we omit the verification that dP0 = P . □
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Lemma 2.4.2 Assume given M,N finitely copresented modules with a map f :M → N . The following
are equivalent:
(i) f is surjective.

(ii) f merely has a section.

(iii) The pointed map D(M⋆)→ D(N⋆) corresponding to f merely has a pointed section.

Proof By Lemma 2.3.11 we know that (i) is equivalent to (ii). It is clear that (ii) implies (i).
Let us assume (i) and prove (iii). By Lemma 2.3.12 and Lemma 2.4.1 we know that D(M∗) is the

first order neighbourhood of 0 in M , so that we have a commutative diagram:

D(M⋆) M

D(N⋆) N

f

i

Since D(N∗) has choice and f is surjective there is g : D(N⋆) → M such that f ◦ g = i. We know that
f(g(0)), so by considering g′ = g− g(0) we have that f ◦ g′ = i and g′(0). Then we can factor g′ through
D(M⋆) as N1 is functorial by Lemma 2.3.5. This gives us a pointed section of the map D(M⋆)→ D(N⋆).□

Corollary 2.4.3 Any finitely copresented module is projective in the category of finitely copresented
modules.

There is work in progress [Che+25] which shows that the finitely copresented modules are also pro-
jective in the abelian closure of the finite free modules and finitely presented modules turn out to be
injective in this category.

3 Unramified schemes

In this short section we present characterisations of unramified schemes and unramified maps between
them. The situation is significantly simpler than with smoothness and étaleness.

3.1 Unramified schemes

Lemma 3.1.1 Let X be an affine scheme, the following are equivalent:
(i) X is unramified.

(ii) Identity types in X are decidable.

(iii) For all x : X, we have that Tx(X) = 0.

Proof (i) implies (ii): By Lemma 1.3.3.
(ii) implies (i): Decidable propositions are formally étale.
(ii) implies (iii): Assume given x : X with t : Tx(X), then for all ϵ : D(1) we have ¬¬(ϵ = 0) so that

we have ¬¬(t(ϵ) = t(0)) which implies t(ϵ) = t(0) since equality is assumed decidable. Therefore t = 0 in
Tx(X).

(iii) implies (i): Indeed given ϵ : R such that ϵ2 = 0, assume x, y : X such that ϵ = 0→ x = y. Then
x ∈ N1(y) so that by Lemma 2.3.12 and Ty(X) = 0 we conclude x = y. □

Corollary 3.1.2 Let X be a scheme, the following are equivalent:
(i) X is unramified.

(ii) Identity types in X are open.

(iii) For all x : X, we have that Tx(X) = 0.

Proof Assume (Ui)i:I a finite cover of X by affine schemes. By Lemma 1.5.1 we have that X is formally
unramified if and only if Ui is formally unramified for all i : I.

(ii) implies (i). By Lemma 1.3.1.

16



(i) implies (iii). Indeed for all x : X there exists i : I such that x ∈ Ui, then Tx(X) = Tx(Ui) and
Tx(Ui) = 0 by Lemma 3.1.1.

(iii) implies (ii). Assume x, y : X, then there exists i : I such that x ∈ Ui and:

x =X y ↔ Σy∈Uix =Ui y

By Lemma 3.1.1 we have that identity types in Ui are decidable, so x =X y is open. □

3.2 Unramified morphisms between schemes

Now we generalise this to maps between schemes.

Proposition 3.2.1 A map between schemes is unramified if and only if its differentials are injective.

Proof The map dfx is injective if and only if its kernel is 0. By Lemma 2.2.7, this means that dfx is
injective for all x : X if and only if: ∏

x:X

T(x,reflf(x))(fibf (f(x))) = 0

On the other hand having fibers with trivial tangent space is equivalent to:∏
y:Y

∏
x:X

∏
p:f(x)=y

T(x,p)(fibf (y)) = 0

Both are equivalent by path elimination on p. □

3.3 Unramified schemes are locally standard

Definition 3.3.1 A scheme is called standard unramified if it is of the form:

Spec(R[X1, · · · , Xn]/P1, · · · , Pk)

with k ≥ n such that the determinant of: (
∂Pi

∂Xj

)
1≤i,j≤n

is invertible in R[X1, · · · , Xn]/P1, · · · , Pk.

Lemma 3.3.2 A standard unramfied scheme is indeed unramified.

Proof Given X standard unramified, for all x : X by Lemma 2.2.7 we have an exact sequence:

0 Tx(X) Rn RkdPx

But since dPx is represented by the Jacobian matrix ∂Pi

∂Xj
(x), the invertibility condition means dPx is

injective and we can conclude. □

Proposition 3.3.3 A scheme is unramified if and only if it has a cover by standard unramified schemes.

Proof By Lemma 1.5.1 and Lemma 3.3.2, we get the converse.
For the direct implication, by Lemma 1.5.1 it is enough to consider an affine scheme:

X = Spec(R[X1, · · · , Xn]/P1, · · · , Pk)

We reason as in Lemma 3.3.2 to get that the Jacobian matrix
(

∂Pi

∂Xj
(x)

)
is invertible for all x : X, which

means that n ≤ k and the Jacobians matrix has an invertible n-minor. We cover by principal open
according to which n-minor is invertible and reorder variables and polynomials to get a cover by pieces
if the form:

Spec(R[X1, · · · , Xn, Y ]/P1, · · · , Pk, 1− Y Q(X))

such that
(

∂Pi

∂Xj
(x)

)
1≤i,j≤n

is invertible for all x : X such that Q(x) ̸= 0. If we reorder the quotienting

ideal as P1, . . . , Pn, 1− Y Q(X), Pn+1, . . . , Pk we get a standard unramified scheme. □
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4 Smooth and étale schemes

In this section we will give characterizations similar to Section 3 for smooth and étale schemes.

4.1 Smooth and étale maps between schemes

Smooth maps between with a smooth smooth source are precisely submersions.

Corollary 4.1.1 Let f : X → Y be a map between schemes with X smooth. Then the following are
equivalent:

(i) The map f is smooth.

(ii) For all x : X, the induced map:

df : Tx(X)→ Tf(x)(Y )

is surjective.

Proof (i) implies (ii). Assume given v : Tf(x)(Y ), then for all t : D(1) we have a map:

t = 0→ fibf (v(t))

with constant value x. So since f is smooth we merely have wt : fibf (v(t)) such that t = 0 implies wt = x.
We conclude using choice over D(1).

(ii) implies (i). Assume given y : Y and ϵ : R such that ϵ2 = 0 and try to merely find a dotted lift in:

ϵ = 0 fibf (y)

1

ϕ

Since X is formally smooth we merely have an x : X such that:∏
p:ϵ=0

ϕ(p) = x

and therefore:

ϵ = 0→ y = f(x)

which means that y ∈ N1(f(x)).

We use Lemma 2.3.12 and Lemma 2.4.2 to get that the map N1(x)→ N1(f(x)) induced by f merely
has a section s sending f(x) to x. Then s(y) : fibf (y) is such that for all p : ϵ = 0 we have that:

ϕ(p) = x = s(f(x)) = s(y) □

Corollary 4.1.2 Let f : X → Y be a map between schemes with X smooth. Then the following are
equivalent:

(i) The map f is étale.

(ii) For all x : X, the induced map:

df : Tx(X)→ Tf(x)(Y )

is an iso.

Proof We apply Proposition 3.2.1 and Corollary 4.1.1. □

Remark 4.1.3 In both previous results, we did not use the smoothness hypothesis on X to prove (i)
implies (ii).

18



4.2 Smooth schemes have free tangent spaces

Lemma 4.2.1 Assume X is a smooth scheme. Then for any x : X the type Tx(X) is smooth.

Proof Consider T (X) = XD(1) the tangent bundle of X. We have to prove that the map:

p : T (X)→ X

is formally smooth. Both source and target are schemes, and the source is formally smooth because X is
smooth and D(1) has choice. So by Corollary 4.1.1 it is enough to prove that for all x : X and v : Tx(X)
the induced map:

dp : T(x,v)(T (X))→ Tx(X)

is surjective.
Consider u : Tx(X). By unpacking the definition of tangent spaces and computing dp(w), we see that

merely finding w : T(x,v)(T (X)) such that dp(w) = u means merely finding:

ϕ : D(1)× D(1)→ X

such that for all t : D(1) we have that:

ϕ(0, t) = v(t)

ϕ(t, 0) = u(t)

But from Lemma 2.2.4 we know that there exists a unique:

ψv,u : D(2)→ X

such that:

ψv,u(0, t) = v(t)

ψv,u(t, 0) = u(t)

Then since X is smooth and the fibers of:

D(2)→ D(1)× D(1)

are closed dense, we conclude from D(1) × D(1) having choice that there merely exists a lift of ψv,u to
D(1)× D(1), which gives us the ϕ we wanted. □

Lemma 4.2.2 Assume given a linear map:

M : Rm → Rn

which has smooth kernel K. Then we can decide whether M = 0.

Proof SinceM = 0 is closed, by Lemma 1.3.1 and Lemma 1.3.3 it is enough to prove that it is ¬¬-stable
to conclude that it is decidable. Assume ¬¬(M = 0), then for any x : Rm we have a dotted lift in:

M = 0 K

1

7→x

because K is formally smooth, so that we merely have y ∈ K such that:

M = 0→ x = y

which implies that ¬¬(x = y) since we assumed ¬¬(M = 0).
Then considering a basis (x1, · · · , xn) of Rm, we get (y1, · · · , yn) such that for all i we have that

yi ∈ K and ¬¬(yi = xi). But then we have that (y1, · · · , yn) is infinitesimally close to a basis and that
being a basis is an open proposition, so that (y1, · · · , yn) is a basis and K = Rm so M = 0. □

Lemma 4.2.3 Assume that K is a finitely copresented module that is also smooth. Then it is finite free.
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Proof Assume a finite copresentation:

0→ K → Rm M→ Rn

We proceed by induction on m. By Lemma 4.2.2 we can decide whether M = 0 or not.
• If M = 0 then K = Rm and we can conclude.

• If M ̸= 0 then we can find a non-zero coefficient in the matrix corresponding to M , and so up to
base change it is of the form: 

1 0 · · · 0
0
...
0

M̃


But then we know that the kernel of M is isomorphic to the kernel of M̃ , and by applying the
induction hypothesis we can conclude that it is finite free. □

Proposition 4.2.4 Let X be a smooth scheme. Then for any x : X we have that Tx(X) is finite free.

Proof By Lemma 4.2.1 we have that Tx(X) is formally smooth, so that we can conclude by Lemma 4.2.3.□

The dimension of Tx(X) is called the dimension of X at x. By boundedness any smooth scheme is a
finite sum of smooth schemes of a fixed dimension. We can turn this into a definition of dimension which
works well in the case of smooth schemes:

Definition 4.2.5 A scheme is smooth of dimension n, if it is smooth and all its tangent spaces are finite
free of dimension n.

4.3 Standard étale and standard smooth schemes

Definition 4.3.1 A standard smooth scheme of dimension k is an affine scheme of the form:

Spec
(
R[X1, · · · , Xn, Y1, · · ·Yk]/P1, · · · , Pn

)
where the determinant of: (

∂Pi

∂Xj

)
1≤i,j≤n

is invertible in R[X1, · · · , Xn, Y1, · · ·Yk]/P1, · · · , Pn.

Definition 4.3.2 A standard smooth scheme of dimension 0 is called a standard étale scheme.

Lemma 4.3.3 Standard étale schemes are étale.

Proof Assume given a standard étale algebra:

R[X1, · · · , Xn]/P1, · · · , Pn

and write:
P : Rn → Rn

for the map induced by P1, · · · , Pn.
Assume given ϵ : R such that ϵ2 = 0, we need to prove that there is a unique dotted lifting in:

R/ϵ R[X1, · · · , Xn]/P1, · · · , Pn

R

x

This means that for all x : Rn such that P (x) = 0 mod ϵ, there exists a unique y : Rn such that:
• We have x = y mod ϵ.

• We have P (y) = 0.
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First we prove existence. For any b : Rn we compute:

P (x+ ϵb) = P (x) + ϵ dPx(b)

We have that P (x) = 0 mod ϵ, say P (x) = ϵa. Since ¬¬(P (x) = 0), we have that dPx is invertible. Then
taking b = −(dPx)

−1(a) gives a lift y = x+ ϵb such that P (y) = 0.
Now we check unicity. Assume y, y′ two such lifts, then y = y′ mod ϵ and we have:

P (y) = P (y′) + dPy′(y − y′)

and P (y) = 0 and P (y′) = 0 so that:
dPy′(y − y′) = 0

But dPy′ is invertible and we can conclude that y = y′. □

Lemma 4.3.4 Any standard smooth scheme of dimension k is smooth of dimension k.

Proof The fibers of the map:

Spec
(
R[X1, · · · , Xn, Y1, · · ·Yk]/P1, · · · , Pn

)
→ Spec(R[Y1, · · ·Yk])

are standard étale, so the map is étale by Lemma 4.3.3. Since:

Spec(R[Y1, · · ·Yk]) = Ak

is smooth by Lemma 1.4.3, we can conclude it is smooth using Lemma 1.2.4.
For the dimension we use Lemma 2.2.3 and Remark 4.1.3. □

4.4 Smooth schemes are locally standard smooth

Proposition 4.4.1 A scheme is smooth of dimension k if and only if it has a finite open cover by
standard smooth schemes of dimension k.

Proof By Lemma 1.5.1 and Lemma 4.3.4, we get the converse.
For the direct implication, by Lemma 1.5.1 it is enough to consider an affine scheme:

X = Spec(R[X1, · · · , Xm]/P1, · · · , Pl)

From Proposition 4.2.4we get that for any x : X we have that dPx has finite free kernel of rank k.
Then by Lemma A.1.3 we know that dPx has rank n = m− k for every x.

We cover X by principal opens according to which n-minor is invertible, so that up to a rearranging
of variables and polynomials we can assume a polynomial G such that:

X = Spec(R[X1, · · · , Xn, Z, Y1, · · · , Yk]/P1, · · · , Pn, 1− ZG,Q1, · · · , Qp)

which can be rewritten as:

X = Spec(R[X1, · · · , Xq, Y1, · · · , Yk]/P1, · · · , Pq, Q1, · · · , Qp)

where q = n+ 1 and
(

∂Pi

∂Xj

)
i,j

is invertible modulo P1, · · · , Pq, Q1, · · · , Qp.

Then we have:

d(P,Q)x,y =

(
∂P
∂X

)
x,y

(
∂P
∂Y

)
x,y(

∂Q
∂X

)
x,y

(
∂Q
∂Y

)
x,y


where we used the notation: (

∂P

∂X

)
x,y

=

(
∂Pi

∂Xj
(x, y)

)
i,j

so that
(
∂P
∂X

)
x,y

is invertible of size q. Moreover by Lemma A.1.2 we get:(
∂Q

∂Y

)
x,y

=

(
∂Q

∂X

)
x,y

(
∂P

∂X

)−1

x,y

(
∂P

∂Y

)
x,y
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which will be useful later.

Now we prove that for any (x, y) : Rq+k such that P (x, y) = 0, the proposition Q(x, y) = 0 is decidable.

Using Lemma 1.3.2 this follow from:

(Q1(x, y), · · · , Qp(x, y))
2 = 0→ (Q1(x, y), · · · , Qp(x, y)) = 0

Assuming (Q1(x, y), · · · , Qp(x, y))
2 = 0, by smoothness there is a dotted lift in:

R/(Q1(x, y), · · · , Ql(x, y)) Spec(R[X1, · · · , Xq, Y1, · · · , Yk]/P1, · · · , Pq, Q1, · · · , Ql)

R

(x,y)

(x′,y′)

Let us prove that Q(x, y) = 0. Indeed we have (x, y) ∼1 (x′, y′) so that we have:

P (x, y) = P (x′, y′) +

(
∂P

∂X

)
x′,y′

(x− x′) +
(
∂P

∂Y

)
x′,y′

(y − y′)

Q(x, y) = Q(x′, y′) +

(
∂Q

∂X

)
x′,y′

(x− x′) +
(
∂Q

∂Y

)
x′,y′

(y − y′)

Then we have P (x, y) = 0, P (x′, y′) = 0 and Q(x′, y′) = 0. From the first equality we get:

x− x′ = −
(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)
x′,y′

(y − y′)

so that from the second we get:

Q(x, y) = −
(
∂Q

∂X

)
x′,y′

(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)
x′,y′

(y − y′) +
(
∂Q

∂Y

)
x′,y′

(y − y′)

so that Q(x, y) = 0 as we have seen previously that:

(
∂Q

∂Y

)
x′,y′

=

(
∂Q

∂X

)
x′,y′

(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)
x′,y′

From the decidability ofQ(x, y) = 0 we get thatX is an open in Spec(R[X1, · · · , Xq, Y1, · · · , Yk]/P1, · · · , Pq)
so it is of the form D(G1, · · · , Gr), and we have an open cover of our scheme by pieces of the form:

Spec(R[X1, · · · , Xq, Z, Y1, · · · , Yk]/P1, · · · , Pq, 1− ZGi)

which is standard smooth of dimension k. □

Corollary 4.4.2 A scheme is étale if and only if it has a cover by standard étale schemes.

Proof By Corollary 3.1.2 we know that a scheme is formally étale if and only if it is smooth of dimension
0. Then we just apply Proposition 4.4.1. □
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A Appendix

A.1 Rank of matrices

Definition A.1.1 A matrix is said to have rank ≤ n if all its n + 1-minors are zero. It is said to have
rank n if it has rank ≤ n and does not have rank ≤ n− 1.

Having a rank is a property of matrices, as a rank function defined on all matrices would allow to e.g.
decide if an r : R is invertible.

Lemma A.1.2 Assume given a matrix M of rank n decomposed into blocks:

M =

(
P Q
R S

)
Such that P is square of size n and invertible. Then we have:

S = RP−1Q

Proof By columns manipulation the matrix is equivalent to:

M =

(
P Q
0 S −RP−1Q

)
but equivalent matrices have the same rank so S = RP−1Q. □

Lemma A.1.3 If a linear map Rm → Rn given by multiplication with M has finite free kernel of rank
k, then M has rank m− k.

Proof Let a1, . . . , ak be a basis for the kernel of M in Rm, which we complete into a basis of Rm via
bk+1, . . . , bm. By completing Mbk+1, . . . ,Mbm to a basis of Rn, we get a basis where M is written as:(

Im−k 0
0 0

)
so that M has rank m− k. □
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