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1 Formally étale, unramified and smooth types

1.1 Definition

Definition 1.1.1 A closed proposition is dense if it is merely of the form:

r1 = 0 ∧ · · · ∧ rn = 0

for r1, · · · , rn : R nilpotent.

Definition 1.1.2 A type X is formally étale (resp. formally unramified, formally smooth) if for all closed
dense proposition P the map:

X → XP

is an equivalence (resp. an embedding, surjective).

Remark 1.1.3 The map X → XP being an equivalence (resp. an embedding, surjective) if and only if
for any map P → X we have a unique (resp. at most one, merely one) dotted lift in:

P X

1
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Definition 1.1.4 A map is said formally étale (resp. formally unramified, formally smooth) if its fibers
are formally étale (resp. formally unramified, formally smooth).

Remark 1.1.5 A type (or map) is formally étale if and only if it is formally unramified and formally
smooth.

Lemma 1.1.6 A type X is formally étale (resp. formally unramified, formally smooth) if and only if for
all ϵ : R such that ϵ2 = 0, the map:

X → Xϵ=0

is an equivalence (resp. an embedding, surjective).

Proof The direct direction is obvious as ϵ = 0 is closed dense when ϵ2 = 0.
For the converse, assume P = Spec(R/N) a closed dense proposition. Then the map R→ R/N with

N f.g. nilpotent ideal can be decomposed as:

R→ A1 → · · ·An = R/N

where Ak is a quotient of R by a f.g. nilpotent ideal and:

Ak → Ak+1

is of the form:
A→ A/(a)

for some a : A with a2 = 0.
We write Pk = Spec(Ak) and:

ik : Pk+1 → Pk

so that fibik(x) is a(x) = 0 where a(x)2 = 0 holds.
Then by hypothesis we have that for all k and x : Pk the map:

X → Xfibik
(x)

is an equivalence (resp. an embedding, surjective). So the map:

XPk →
∏
x:Pk

Xfibik
(x) = XPk+1

is an equivalence (resp. an embedding, surjective by Pk having choice). We conclude that the map:

X → XP

is an equivalence (resp. an embedding, surjective). □

1.2 Stability results

Being formally étale is a modality given as nullification at all dense closed propostions and therefore lex
[RSS20][Corollary 3.12]. This means we have the following results:

Proposition 1.2.1 • If X is any type and for all x : X we have a formally étale type Yx, then:∏
x:X

Yx

is formally étale.

• If X is formally étale and for all x : X we have a formally étale type Yx, then:∑
x:X

Yx

is formally étale.

• If X is formally étale then for all x, y : X the type x = y is formally étale.

• The type of formally étale types is formally étale.
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Formally unramified type are the separated types [Chr+20][Definition 2.13] associated to formally
étale types. By [Chr+20][Lemma 2.15], being formally unramified is a nullification modality as well.

Lemma 1.2.2 A type X is formally unramified if and only if for any x, y : X the type x = y is formally
étale.

This means we have the following:

Proposition 1.2.3 • If X is any type and for all x : X we have a formally unramified type Yx, then:∏
x:X

Yx

is formally unramified.

• If X is formally unramified and for all x : X we have a formally unramified type Yx, then:∑
x:X

Yx

is formally unramified.

Being formally smooth is not a modality, indeed we will see it is not stable under identity types.
Neverthless we have the following results:

Lemma 1.2.4 • If X is any type satifying choice and for all x : X we have a formally smooth type
Yx, then: ∏

x:X

Yx

is formally smooth.

• If X is a formally smooth type and for all x : X we have a formally smooth type Yx, then:∑
x:X

Yx

is formally smooth.

1.3 Basic examples

Next proposition implies that open propositions are formally étale.

Lemma 1.3.1 Any ¬¬-stable proposition is formally étale.

Proof Assume U is a ¬¬-stable proposition. For U to be formally étale it is enough to check that
UP → U for all P closed dense. This holds because for P closed dense we have ¬¬P . □

Lemma 1.3.2 A closed and formally étale proposition is decidable.

Proof Given a formally étale closed proposition P , let us prove it is ¬¬-stable. Indeed if ¬¬P then P
is closed dense so that P → P implies P since P is formally étale.

Let I be the f.g. ideal in R such that:
P ↔ I = 0

We have that I2 = 0 implies ¬¬(I = 0) which implies I = 0. But then we have that I = I2, so that by
Nakayama (see [LQ15, Lemma II.4.6]) there exists e : R such that eI = 0 and 1− e ∈ I. If e is invertible
then I = 0, if 1− e in invertible then I = R. □

Proposition 1.3.3 The type Bool is formally étale.

Proof The identity types in Bool are decidable so Bool is formally unramified. Consider ϵ : R such that
ϵ2 = 0 and a map:

ϵ = 0→ Bool

we want to merely factor it through 1.
Since Bool ⊆ R, by duality the map gives f : R/(ϵ) such that f2 = f . Since R/(ϵ) is local we conclude

that f = 1 or f = 0 and so the map has constant value 0 : Bool or 1 : Bool. □
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Remark 1.3.4 This means that formally étale (resp. formally unramified, formally smooth) types are
stable by finite sums. In particular finite types are formally étale.

Proposition 1.3.5 The type N is formally étale.

Proof Identity types in N are decidable so N is formally unramified, we want to show it is formally
smooth. Assume given a map:

P → N

for P a closed dense proposition, we want to show it merely factors through 1. By boundedness the map
merely factors through a finite type, which is formally étale by remark 1.3.4 so we conclude. □

Lemma 1.3.6 Any proposition is formally unramified.

This means that any subtype of a formally unramified type is formally unramified.

Remark 1.3.7 Given any lex modality, a type is separated if and only if it is a subtype of a modal type,
so a type is formally unramified if and only if it is a subtype of a formally étale type.

We also have the following surprising dual result, meaning that any quotient of a formally smooth
type is formally smooth:

Proposition 1.3.8 If X is formally smooth and p : X → Y surjective, then Y is formally smooth.

Proof For any P closed dense and any diagram:

P Y

1 Xx

p

by choice for closed propositions we merely get the dotted diagonal, and since X is formally smooth we
get the dotted x, and then p(x) gives a lift. □

1.4 Being formally étale, unramified or smooth is Zariski local

Lemma 1.4.1 Let X with (Ui)i:I be a finite open cover of X. Then X is formally étale (resp. formally
unramified, formally smooth) if and only if all the Ui are formally étale (resp. formally unramified,
formally smooth).

Proof First, we show this for formally unramified:

• Any subtype of a formally unramified type is formally unramified by lemma 1.3.6.

• Conversely, assume X with such a cover, for all x, y : X there exists i : I such that x ∈ Ui and then:

x =X y ↔
∑
y∈Ui

x =Ui
y

which is formally étale because open propositions are formally étale by lemma 1.3.1.

Now for formally smooth:

• Open proposition are formally smooth by lemma 1.3.1 so that open in a formally smooth are
formally smooth.

• Conversely if each Ui is formally smooth then Σi:IUi is formally smooth by remark 1.3.4, so we can
conclude by applying proposition 1.3.8 to the surjection:

Σi:IUi → X

The result for formally étale immediately follows. □
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2 Linear algebra and tangent spaces

2.1 Modules and infinitesimal disks

The most basic infinitesimal schemes are the first order neighbourhoods in affine n-space Rn. Their
algebra of functions is Rn+1, which is an instance of the more general construction below.

For any R-module M , there is an R-algebra structure on R⊕M with multiplication given by

(r,m)(r′,m′) = (rr′, rm′ + r′m)

Algebras of this form are called square zero extensions of R, since products of the form (0,m)(0, n) are
zero. By this property, for any R-linear map φ : M → N between modules M,N , the map id ⊕ φ :
R⊕M → R⊕N is an R-algebra homomorphism. In particular, if M is finitely presented, i.e. merely the
cokernel of some p : Rn → Rm then R ⊕M is the cokernel of a map between finitely presented algebras
and therefore finitely presetend as an algebra.

Definition 2.1.1 Given M a finitely presented R-module, we define an f.p. algebra structure on R⊕M
as above and set:

D(M) :≡ Spec(R⊕M)

This is a pointed scheme by the first projection which we denote 0 and the construction is functorial by
the discussion above.

We write D(n) for D(Rn) so that for example:

D(1) = Spec(R[X]/(X2)) = {ϵ : R | ϵ2 = 0}

Definition 2.1.2 Assume given M an f.p. R-module and A an f.p. R-algebra with x : Spec(A). An
M -derivation at x is a morphism of R-modules:

d : A→M

such that for all a, b : A we have that:

d(ab) = a(x)d(b) + b(x)d(a)

Lemma 2.1.3 Assume given M an f.p. module and A an f.p. algebra with x : Spec(A). Pointed maps:

D(M)→pt (Spec(A), x)

corresponds to M -derivation at x.

Proof Such a pointed map correponds to an algebra map:

f : A→ R⊕M

where the composite with the first projection is x. This means that, for some module map d : A → M
we have:

f(a) = (a(x), d(a))

We can immediately see that f being a map of R-algebras is equivalent to d being an M -derivation at
x. □

Lemma 2.1.4 LetM , N be finitely presented modules. Then linear mapsM → N correspond to pointed
maps D(N)→pt D(M).

Proof By lemma 2.1.3 such a pointed map corresponds to an N -derivation at 0 : D(M).
Such a derivation is a morphism of modules:

d : R⊕M → N

such that for all (r,m), (r′,m′) : R⊕M we have that:

d(rr′, rm′ + r′m) = rd(r′,m′) + r′d(r,m)

This implies d(r, 0) = 0 for all r : R, so we obtain a section to the injective functorial action of D on
linear maps. □
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2.2 Tangent spaces

Definition 2.2.1 Let X be a type and let x : X, then we define the tangent space Tx(X) of X at x by:

{t : D(1)→ X | t(0) = x}

Definition 2.2.2 Given f : X → Y and x : X we have a map:

dfx : Tx(X)→ Tf(x)(Y )

induced by post-composition.

Lemma 2.2.3 For all x : Rn we have Tx(R
n) = Rn.

Proof Since Rn is homogeneous we can assume x = 0. By lemma 2.1.3 we know that T0(R
n) corresponds

to the type of linear maps
R[X1, · · · , Xn]→ R

such that for all P,Q we have:
d(PQ) = P (0)dQ+Q(0)dP

which is equivalent to d(1) = 0 and d(XiXj) = 0, so any such map is determined by its image on the Xi

so it is equivalent to an element of Rn. □

Lemma 2.2.4 Given a scheme X with x : X and v, w : Tx(X), there exists a unique:

ψv,w : D(2)→pt X

such that for all ϵ : D(1) we have that:
ψv,w(ϵ, 0) = v(ϵ)

ψv,w(0, ϵ) = w(ϵ)

Proof We can assume X is affine. Then D(2) →pt X is equivalent to the type of R2-derivations at x,
but giving an M ⊕N -derivation is equivalent to giving an M -derivation and an N -derivation. Checking
the equalities is a routine computation. □

Lemma 2.2.5 For any scheme X and x : X, we have that Tx(X) is a module.

Proof We define scalar multiplication by sending v to t 7→ v(rt).
Then to define addition of v, w : Tx(X), we have define:

(v + w)(ϵ) = ψv,w(ϵ, ϵ)

where ψv,w is defined in lemma 2.2.4.
We omit checking that this is a module structure. □

Lemma 2.2.6 For f : X → Y a map between schemes, for all x : X the map dfx is a map of R-modules.

Proof Commutation with scalar multiplication is immediate.
Commutation with addition comes by applying uniqueness in lemma 2.2.4 to show:

f ◦ ψv,w = ψf◦v,f◦w □

Lemma 2.2.7 For any map f : X → Y and x : X, we have that:

Ker(dfx) = T(x,reflf(x))(fibf (f(x)))

Proof This holds because:
(fibf (f(x)), (x, reflf(x)))

is the pullback of:
(X,x)→ (Y, f(x))← (1, ∗)

in pointed types, applied using (D(1), 0). □
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Lemma 2.2.8 Let X be a scheme with x : X. Then Tx(X) is a finitely co-presented R-module.

Proof We cab assume X affine. Then X is the kernel of a map:

P : Rm → Rn

so that for all x : X, by applying lemma 2.2.7 we know that we have Tx(X) is the kernel of:

dPx : Tx(R
m)→ T0(R

n)

and we conclude by lemma 2.2.3. □

Corollary 2.2.9 Let X be a scheme, then the tangent bundle XD(1) is a scheme.

Proof We give two independent arguments, the first uses the lemma, the second is a direct computation:
(i) Finitely co-presented modules are schemes, since they are the common zeros of linear functions on

Rn. So by the lemma, all tangent spaces Tx(X) are schemes and

XD(1) =
∑
x:X

Tx(X)

is a dependent sum of schemes and therefore a scheme.

(ii) LetX be covered by open affine U1, . . . , Un then U
D(1)
1 , . . . , U

D(1)
n is an open cover by double negation

stability of opens. So we conclude by showing that for affine Y = SpecR[X1, . . . , Xn]/(f1, . . . , fl)
the tangent bundle Y D(1) is affine by direct computation:

Y D(1) = HomR-Alg(R[X1, . . . , Xn]/(f1, . . . , fl), R⊕ ϵR)
= {(y1, . . . , yn) : R⊕ ϵR | ∀i.fi(y1, . . . , yn) = 0}

= {(x1, . . . , xn, d1, . . . , dn) : R2n | ∀i.fi(x1, . . . , xn) = 0 and
∑
j

dj
∂fi
∂Xj

(x1, . . . , xn) = 0} □

2.3 Infinitesimal neighbourhoods

Definition 2.3.1 Let X be a set with x : X. The first order neighborhood N1(x) is defined as the set
of y : X such that there exists an f.g. ideal I ⊆ R with I2 = 0 and:

I = 0→ x = y

Lemma 2.3.2 Assume x, y : Rn, then x ∈ N1(y) if and only if the ideal generated by the xi − yi has
square zero.

Proof Let us denote I the ideal generated by the xi − yi so that we clearly have x = y if and only if
I = 0.

If I2 = 0 then it is clear that y ∈ N1(x).
Conversely if J = 0→ I = 0 then we have that I ⊂ J by duality so that J2 = 0 implies I2 = 0. □

Lemma 2.3.3 Let X be a scheme with x : X. Then N1(x) is an affine scheme.

Proof If x ∈ U open in X, we have that N1(x) ⊂ U so that we can assume X affine.
This means X is a closed subscheme C ⊂ Rn. Then by lemma 2.3.2, we have that N1(x) is the type

of y : Rn such that y ∈ C and for all i, j we have that (xi − yi)(xj − yj) = 0, which is a closed subset of
C so it is an affine scheme. □

Definition 2.3.4 A pointed scheme (X, ∗) is called a first order (infinitesimal) disk if for all x : X we
have x ∈ N1(∗).

Lemma 2.3.5 A pointed scheme (X, ∗) is a first order disk if and only if there exists a finitely presented
module M such that:

(X, ∗) = (D(M), 0)
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Proof First we check that for all M finitely presented and y : D(M) we have that y ∈ N1(0). Let
m1, · · · ,mn be generators of M , then consider d : M → R induced by y, then y = 0 if and only if d = 0
and for all i, j we have that:

d(mi)d(mj) = 0

This means that I = (d(m1), · · · , d(mn)) has square 0 and I = 0 implies y = 0 so that y ∈ N1(0).
For the converse we assume X a first order disk, by lemma 2.3.3 we have that X is affine and pointed,

up to translation we can assume X ⊂ Rn closed pointed by 0. Since X is a first order disk we have that
X ⊂ N1(0) and by lemma 2.3.2 we have N1(0) = D(Rn).

This means there is an f.g. ideal J in R⊕Rn such that X = Spec(R⊕Rn/J). But 0 ∈ X corresponds
to the first projection from R ⊕ Rn – meaning if (x, y) ∈ J then x = 0, so that J corresponds uniquely
to an f.g. sub-module K of Rn and:

X = Spec(R⊕ (Rn/K)) = D(Rn/K) □

Lemma 2.3.6 The functor from finitely copresented modules to first order disks:

M 7→ D(M⋆)

is an equivalence, with inverse:
(X,x) 7→ Tx(X)

Proof It is fully faithful by lemma 2.1.4 and essentially surjective by lemma 2.3.5. To check for the
inverse it is enough to check that:

T0(D(M⋆)) =M

which is also a consequence of lemma 2.1.4. □

Lemma 2.3.7 Let X be a scheme with x : X, then we have:

N1(x) = D(Tx(X)⋆)

Proof By lemma 2.3.3 we have that (N1(x), x) is a first order disk. By lemma 2.3.6 it is enough to check
that Tx(N1(x)) = T0(D(Tx(X)⋆)).

It is immediate that any map f : D(1) → X uniquely factors through N1(f(0)) so that Tx(N1(x)) =
Tx(X), and we have that T0(D(Tx(X)⋆)) = Tx(X) by lemma 2.3.6. □

2.4 Projectivity of finitely copresented modules

Lemma 2.4.1 Let M be a finitely copresented module, then we have T0(M) =M .

Proof We have that M is the kernel of a linear map P : Rm → Rn. By lemma 2.2.7 we have that T0(M)
is the kernel of:

dP0 : T0(R
m)→ T0(R

n)

but by lemma 2.2.3 this is a map from Rm to Rn, we omit the verification that dP0 = P . □

Lemma 2.4.2 Any finitely copresented module is projective.

Proof We consider M,N finitely copresented with a surjective map:

f :M → N

By lemma 2.3.7 and lemma 2.4.1 we know that D(M∗) = N1(0) in M , so that we have a commutative
diagram:

D(M⋆) M

D(N⋆) N

f

i
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Since D(N∗) has choice and f is surjective there is g : D(N⋆)→M such that f ◦ g = i. Up to translation
we can assume g(0) = 0. Then we can factor g through D(M⋆) as N1 is functorial. This gives us a
pointed section of the map:

D(M⋆)→ D(N⋆)

which by lemma 2.1.4 gives a linear section of f . (TODO should we check functoriality?) □

Lemma 2.4.3 A linear map between finitely copresented module:

f :M → N

is surjective if and only if the corresponding pointed map:

D(M⋆)→ D(N⋆)

merely has a section preserving 0.

Proof By lemma 2.1.4 we know that:

D(M⋆)→ D(N⋆)

merely having a section preserving 0 is equivalent to:

f :M → N

merely having a section. But since any finitely copresented module is projective, this is equivalent to f
being surjective. □

2.5 Rank of matrices

Definition 2.5.1 A matrix is said of rank n if it has an invertible n-minor, and all its n+1-minor have
determinant 0.

Having a rank is a property of matrices, as there is no rank function defined on all matrices.

Lemma 2.5.2 Assume given a matrix M of rank n decomposed into blocks:

M =

(
P Q
R S

)
Such that P is square of size n and invertible. Then we have:

S = RP−1Q

Proof By columns manipulation the matrix is equivalent to:

M =

(
P 0
0 S −RP−1Q

)
but equivalent matrices have the same rank so S = RP−1Q. □

Lemma 2.5.3 If a linear map:

M : Rm → Rn

has kernel Rk, then it has rank m− k.

Proof Let a1, · · · , an be a basis for the kernel of M in Rm, which we complete into a basis of Rm via
bn+1, · · · , bm. By completing f(bn+1), · · · , f(bm) to a basis of Rn, we get a basis where M is written as:(

In (0)
(0) (0)

)
so that M has rank n. □
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3 Formally unramified schemes

Lemma 3.0.1 Let X be an affine scheme, the following are equivalent:
(i) X is formally unramified.

(ii) Identity types in X are decidable.

(iii) For all x : X, we have that Tx(X) = 0.

Proof (i) implies (ii). By lemma 1.3.2.
(ii) implies (i). Because decidable implies formally étale.
(ii) implies (iii). Assume given x : X with t : Tx(X), then for all ϵ : D(1) we have ¬¬(ϵ = 0) so that

we have ¬¬t(ϵ) = t(0) which implies t(ϵ) = t(0) since equality is assumed decidable. Therefore t = 0 in
Tx(X).

(iii) implies (ii). Indeed given ϵ : R such that ϵ2 = 0, assume x, y : X such that ϵ = 0→ x = y. Then
x ∈ N1(y) and by lemma 2.3.7 and Ty(X) = 0 we conclude x = y. □

Corollary 3.0.2 Let X be a scheme, the following are equivalent:
(i) X is formally unramified.

(ii) Identity types in X are open.

(iii) For all x : X, we have that Tx(X) = 0.

Proof Assume (Ui)i:I a finite cover of X by affine schemes. By lemma 1.4.1 we have that X is formally
unramified if and only Ui is formally unramified for all i : I.

(ii) implies (i). By lemma 1.3.1.
(i) implies (iii). Indeed for all x : X there exists i : I such that x ∈ Ui and then Tx(X) = Tx(Ui) and

Tx(Ui) = 0 by lemma 3.0.1.
(iii) implies (ii). Assume x, y : X, then:

x =X y ↔ Σy∈Ui
x =Ui

y

By lemma 3.0.1 we have that identity types in Ui is decidable, so x =X y is open. □

Now we generalise this to maps between schemes.

Proposition 3.0.3 A map between schemes is unramified if and only if its differentials are injective.

Proof The map dfx is injective if and only if its kernel is 0. By lemma 2.2.7, this means that dfx is
injective for all x : X if and only if: ∏

x:X

T(x,reflf(x))(fibf (f(x))) = 0

On the other hand having fibers with trivial tangent space is equivalent to:∏
y:Y

∏
x:X

∏
p:f(x)=y

T(x,p)(fibf (y)) = 0

Both are equivalent by path elimination on p. □

4 Formally smooth and étale schemes

4.1 Smooth and étale maps between schemes

Note that it is immediate from the definition of smoothness that smooth maps induce surjections on
tangent spaces. We have a converse when the domain is smooth.

Corollary 4.1.1 Let f : X → Y be a map between schemes with X smooth. Then the following are
equivalent:
(i) The map f is smooth.
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(ii) For all x : X, the induced map:
df : Tx(X)→ Tf(x)(Y )

is surjective.

Proof (i) implies (ii). Assume given a map v : D(1)→ Y such that v(0) = f(x), then for all t : D(1) we
have a map:

t = 0→ fibf (v(t))

so since the f is smooth we merely have wt : fibf (v(t)) such that t = 0 implies wt = 0. We conclude
using choice over D(1).

(ii) implies (i). Assume given y : Y and ϵ : R such that ϵ2 = 0 and try to merely find a dotted lift in:

ϵ = 0 fibf (y)

1

ϕ

Since X is formally smooth we merely have an x : X such that:∏
p:ϵ=0

ϕ(p) = x

and therefore:
ϵ = 0→ y = f(x)

which means that y ∈ N1(f(x)). We use lemma 2.4.3 to get that the map N1(x)→ N1(f(x)) merely has
a section s sending f(x) to x.

Then s(y) : fibf (y) such that for all p : ϵ = 0 we have that:

ϕ(p) = x = s(f(x)) = s(y) □

Corollary 4.1.2 Let f : X → Y be a map between schemes. Assume X is smooth. Then the following
are equivalent:
(i) The map f is étale.

(ii) For all x : X, the induced map:
df : Tx(X)→ Tf(x)(Y )

is an iso.

Proof We apply proposition 3.0.3 and corollary 4.1.1. □

4.2 Smooth schemes have free tangent spaces

Lemma 4.2.1 Assume X is a smooth scheme. Then for any x : X the type Tx(X) is formally smooth.

Proof Consider T (X) = XD(1) the total tangent bundle of X. We have to prove that the map:

p : T (X)→ X

is formally smooth. Both source and target are schemes, and the source is formally smooth because X is
smooth and D(1) has choice. So by corollary 4.1.1 it is enough to prove that for all x : X and v : Tx(X)
the induced map:

dp : T(x,v)(T (X))→ Tx(X)

is surjective.
Consider w : Tx(X). By unpacking the definition of tangent spaces, we see that merely finding

w : T(x,v)(T (X)) such that dp(w) = w means merely finding:

ϕ : D(1)× D(1)→ X

11



such that for all t : D(1) we have that:
ϕ(0, t) = v(t)

ϕ(t, 0) = w(t)

But we know that there exists a unique:

ψv,w : D(2)→ X

such that:
ψv,w(0, t) = v(t)

ψw,v(t, 0) = w(t)

as defined in lemma 2.2.4.
Then the fact that X is smooth and that the fibers of:

D(2)→ D(1)× D(1)

are closed dense with D(1)×D(1) having choice means that there merely exists a lift of ψv,w to D(1)×D(1),
which gives us the ϕ we wanted. □

Lemma 4.2.2 Assume given a linear map:

M : Rm → Rn

which has a formally smooth kernel. Then we can decide whether M = 0.

Proof Since M = 0 is closed, it is enough to prove that it is ¬¬-stable to conclude that it is decidable
by lemma 1.3.1 and lemma 1.3.2. Assume ¬¬(M = 0), then for any x : Rm we have a dotted lift in:

M = 0 K

1

7→x

because K is formally smooth, so that we merely have y : K such that:

M = 0→ x = y

which implies that ¬¬(x = y) since we assumed ¬¬(M = 0).
Then considering a basis (x1, · · · , xn) of Rm, we get (y1, · · · , yn) such that for all i we have that

M(yi) = 0 and ¬¬(yi = xi). But then we have that (y1, · · · , yn) is infinitesimally close to a basis and
that being a basis is an open proposition, so that (y1, · · · , yn) is a basis and M = 0. □

Lemma 4.2.3 Assume that K is a finitely copresented module that is also formally smooth. Then it is
finite free.

Proof Assume a finite copresentation:

0→ K → Rm M→ Rn

We proceed by induction on m. By lemma 4.2.2 we can decide whether M = 0 or not.
• If M = 0 then K = Rm and we can conclude.

• If M ̸= 0 then we can find a non-zero coefficient in the matrix corresponding to M , and so up to
base change it is of the form: 

1 0 · · · 0
0
...
0

M̃


But then we know that the kernel of M is equivalent to the kernel of M̃ , and by applying the
induction hypothesis we can conclude that it is finite free. □

Proposition 4.2.4 Let X be a smooth scheme. Then for any x : X we have that Tx(X) is finite free.

Proof By lemma 4.2.1 we have that Tx(X) is formally smooth, so that we can conclude by lemma 4.2.3.□

The dimension of Tx(X) is called the dimension of X at x. By boundedness any smooth scheme is a
finite sum of smooth scheme of a fixed dimension.

12



4.3 Standard étale and standard smooth schemes

Definition 4.3.1 A standard smooth scheme of dimension k is an affine scheme of the form:

Spec
(
(R[X1, · · · , Xn, Y1, · · ·Yk]/P1, · · · , Pn)G

)
where G divides the determinant of: (

∂Pi

∂Xj

)
1≤i,j≤n

in:
R[X1, · · · , Xn, Y1, · · ·Yk]/P1, · · · , Pn

Definition 4.3.2 A standard smooth scheme of dimension 0 is called a standard étale scheme.

Lemma 4.3.3 Standard étale schemes are étale.

Proof Assume given a standard étale algebra:

(R[X1, · · · , Xn]/P1, · · · , Pn)G

and write:
P : Rn → Rm

for the map induced by P1, · · · , Pm.
Assume given ϵ : R such that ϵ2 = 0, we need to prove that there is a unique dotted lifting in:

R/ϵ (R[X1, · · · , Xn]/P1, · · · , Pn)G

R

x

This means that for all x : Rn such that P (x) = 0 mod ϵ and G(x) invertible modulo ϵ (or equivalently
G(x) invertible), there exists a unique y : Rn such that:

• We have x = y mod ϵ.

• We have P (y) = 0.

• We have G(y) ̸= 0 (this is implied by x = y mod ϵ and G(x) ̸= 0).
First we prove existence. For any b : Rn we compute:

P (x+ ϵb) = P (x) + ϵ dPx(b)

We have that P (x) = 0 mod ϵ, say P (x) = ϵa. Then since G(x) ̸= 0 and det(dP ) divides G, we have that
dPx is invertible. Then taking b = −(dPx)

−1(a) gives a lift y = x+ ϵb such that P (y) = 0.
Now we check unicity. Assume y, y′ two such lifts, then y = y′ mod ϵ and we have:

P (y) = P (y′) + dPy′(y − y′)

and P (y) = 0 and P (y′) = 0 so that:
dPy′(y − y′) = 0

But G(y′) ̸= 0 so dPy′ is invertible and we can conclude that y = y′. □

Lemma 4.3.4 Any standard smooth scheme of dimension k is formally smooth of dimension k.

Proof The fibers of the map:

Spec
(
(R[X1, · · · , Xn, Y1, · · ·Yk]/P1, · · · , Pn)G

)
→ Spec(R[Y1, · · ·Yk])

are standard étale, so the map is étale by lemma 4.3.3. Since:

Spec(R[Y1, · · ·Yk]) = Ak

is smooth by ??, we can conclude it is smooth using ??.
For the dimension we use lemma 2.2.3 and corollary 4.1.2. □
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4.4 Smooth schemes are locally standard smooth

Proposition 4.4.1 A scheme is smooth of dimension k if and only if it has a finite open cover by
standard smooth schemes of dimension k.

Proof We can assume the scheme X affine, say of the form:

X = Spec(R[X1, · · · , Xm]/P1, · · · , Pl)

By proposition 4.2.4, for any x : X we have that dPx has free kernel. We partition by the dimension
k of the kernel. Then by ?? we know that dPx has rank n = m− k for every x.

We cover X according to which n-minor is invertible, so that up to a rearranging of variables and
polynomials we can assume that:

X = Spec(R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn, Q1, · · · , Ql)

where we have:

dPx,y =

(
∂P
∂X

)
x,y

(
∂P
∂Y

)
x,y(

∂Q
∂X

)
x,y

(
∂Q
∂Y

)
x,y


where we used the notation: (

∂P

∂X

)
x,y

=
((

∂Pi

∂Xj

)
x,y

)
i,j

so that ∂P
∂X is invertible of size n. Moreover by lemma 2.5.2 we get:(

∂Q

∂Y

)
x,y

=

(
∂Q

∂X

)
x,y

(
∂P

∂X

)−1

x,y

(
∂P

∂Y

)
x,y

which will be useful later.
Now we prove that for any (x, y) : Rn+k such that P (x, y) = 0 it is decidable whether

Q(x, y) = 0

To do this it is enough to prove that:

(Q1(x, y), · · · , Ql(x, y))
2 = 0→ (Q1(x, y), · · · , Ql(x, y)) = 0

Assuming (Q1(x, y), · · · , Ql(x, y))
2 = 0, by smoothness there is a dotted lifting in:

R/(Q1(x, y), · · · , Ql(x, y)) Spec(R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn, Q1, · · · , Ql)

R

(x,y)

(x′,y′)

Let us prove that Q(x, y) = 0. Indeed we have (x, y) ∼1 (x′, y′) so that we have:

P (x, y) = P (x′, y′) +

(
∂P

∂X

)
x′,y′

(x− x′) +
(
∂P

∂Y

)
x′,y′

(y − y′)

Q(x, y) = Q(x′, y′) +

(
∂Q

∂X

)
x′,y′

(x− x′) +
(
∂Q

∂Y

)
x′,y′

(y − y′)

Then we have P (x, y) = 0, P (x′, y′) = 0 and Q(x′, y′) = 0. From the first equality we get:

x− x′ = −
(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)
x′,y′

(y − y′)

so that from the second we get:

Q(x, y) = −
(
∂Q

∂X

)
x′,y′

(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)
x′,y′

(y − y′) +
(
∂Q

∂Y

)
x′,y′

(y − y′)
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so that Q(x, y) = 0 as we have seen previously that:(
∂Q

∂Y

)
x′,y′

=

(
∂Q

∂X

)
x′,y′

(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)
x′,y′

From the decidability of Q(x, y) = 0 we get that X is an open in:

Spec(R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn)

so it is of the form D(G1, · · · , Gn), and we have an open cover of our scheme by pieces of the form:

Spec((R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn)G)

Where Pi(x) = 0 for all i and G(x) ̸= 0 implies:

det(Jac(P1, · · · , Pn)x) ̸= 0

We write:
F (x) = det(Jac(P1, · · · , Pn)x)

Then for all x : Spec(R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn) we have that:

(G(x) ̸= 0)→ (F (x) ̸= 0)

so that there exists n such that:
F (x)|G(x)n

and using boundedness we get N such that for all x : Spec(R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn) we
have:

F (x)|G(x)N

and we conclude that F divides GN in R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn. So by replacing G by GN ,
we get standard smooth pieces. □

Corollary 4.4.2 A scheme is formally étale if and only if it has a cover by standard étale schemes.

Proof By corollary 3.0.2 we know that a scheme is formally étale if and only if it is smooth of dimension
0. Then we just apply proposition 4.4.1. □
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