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Abstract

In synthetic algebraic geometry (SAG) [CCH23], we study finitely presented algebras over a
commutative ring. In this work, we study countably presented Boolean algebras instead. Where the
finitely presented algebras over a commutative ring induce a Zariski topos, the countably presented
Boolean algebras induce the topos of light condensed sets [CS24]. [CCH23] proposes an axiomatization
of the Zariski topos in univalent homotopy type theory [Pro13]. In this work, we propose similar
axioms, which we expect to be modelled by light condensed sets.

(The following is a collection of notes on work in progress.)

Introduction

Definition 0.1 A countably presented Boolean algebra B is a Boolean algebra such that there merely
are countable sets I, J , a set of generators gi, i ∈ I and a set fj , j ∈ J of Boolean expressions over these
generators such that B is equivalent to the quotient of the free Boolean algebra over the generators by
the relations fj = 0.

If I, J are finite, we call B a finitely presented Boolean algebra.

Remark 0.2 As Boolean algebras are rings, any relation of the form f = g with both f, g Boolean
expressions can be written as h = 0 with h = f − g a Boolean expression.

We can express a countably presented Boolean algebra as the colimit of a finitely presented Boolean
algebra. This is the formulation closer to [CS24].

Lemma 0.3 B is a countably presented Boolean algebra iff it merely is the colimit of a sequence of
finitely presented Boolean algebras.

Proof First, assume a sequence of finitely presented Boolean algebras. We need to show that the colimit
is a countably presented Boolean algebra.

• The set of generators for the colimit is the colimit of the sets of generators.

• The set of relations for the colimit is the union of the sets of relations. After all, any expression f
that becomes 0 somewhere in the sequence will will be coprojected to 0 in the colimit. And as any
equality that holds in the colimit uses finitely many elements, it must already hold somewhere in
the sequence.

Note that both colimits over countably many finite sets are countable. Hence the colimit is countably
represented.

Conversely, given a countably presented Boolean algebra B, we need to give a sequence and show it’s
colimit is B. For our sequence, we assume we have an enumeration of the generators of B. We let Gn be
given by the first n generators. Let Rn be the relations involving these generators, of which there are only
finitely many. We define Bn = Gn/Rn, which is a finitely presented Boolean algebra. The embedding of
the first n generators into the first m generators gives us a map Bn → Bm whenever n ≤ m. Because
these morphisms are compatible, this defines a sequence of Boolean algebras. We claim the colimit of
this sequence is B.

Any element in B can be expressed as Boolean combination of finitely many generators, which must
occur in some Bn, and thus in the colimit. Whenever the images of two elements in the colimit are equal,
they are already equal in some Bm, hence it follows from a finite subset of the relations for B that the
elements are equal, hence the elements are equal in B. Thus we have an embedding from B into the
colimit.
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Any element in the colimit already appears in some Bn, and hence is a finite expression using genera-
tors from B, thus occurs in B is as well. Suppose two elements in the colimit correspond in this manner
to the same element in B. Then their equality follows from the relations of B. By compactness in the
meta-theory, their equality must follow from a finite subset of the relations from B, hence there is some
Bm where both elements are equal, and they are equal in the colimit as well. Thus the colimit embeds
into B.

We conclude that B and the colimit are isomorphic Boolean algebras. □

Definition 0.4 We call an object K (countably) compact if for every sequence A = colimAn, we have
AK = colimAK

n .

Lemma 0.5 Finitely presented algebras are compact in the category of algebras.

The following uses Dependent Choice.

Lemma 0.6 If A → B is injective between countably presented Boolean algebras, we can write it as
colimit of injections between finitely presented Boolean algebras.

In SAG, we deal with a fixed commutative ring R. For this project, the role of R is taken over by the
Boolean algebra 2 = 1 + 1. Note that we don’t need to postulate an alternative for the Loc axiom. We
write Boole the type of countably presented Boolean algebras. Note that as each Boolean algebra is a
Set, we Boole is a subtype of hSet. Also, as being countable is a notion independent of universes, Boole
is independent of universes. Finally, note that Boole has a natural category structure.

Definition 0.7 For B a countably presented Boolean algebra, we define Sp(B) as the set of Boolean
morphisms from B to 2.

An example of an element of Boole is the free algebra C on countably many generators. The corre-
sponding set Sp(C) is then Cantor space 2N.

Another example is the algebra B∞ generated by pn with relations pnpm = 0 for n ̸= m. The
corresponding set Sp(B∞) is the set N∞ of binary sequences with at most one element ̸= 0.

Axiom 1 (Stone duality)
For any countably presented Boolean algebra B, the evaluation map B → 2Sp(B) is an isomorphism.

Definition 0.8 We define the predicate on types isStone by

isStone(X) =
∑

B:Boole

X = Sp(B) (1)

A type X is called Stone if isStone(X) is inhabited.

Stone types will take over the role of affine scheme from [CCH23], and we repeat some results here.
Analogously to Lemma 3.1.2, for X Stone, we have X = Sp(2X). Proposition 2.2.1 now says that Sp
gives an equivalence

HomBoole(A,B) = (Sp(B) → Sp(A)) (2)

By [HoTT; p TODO], it follows that Sp is an embedding from Boole to any universe of types. Its image,
Stone also has a natural category structure. The map Sp defines then an anti-equivalence of categories
between Boole and Stone.

Any Stone set has a natural topology, where basic open are decidable subsets.

Proposition 0.9 Any map f : Sp(B) → N is uniformely continuous.

Proof For each natural number n, the fiber f−1(n) is a decidable subset of Sp(B). Via the isomorphism
B → 2Sp(B), this corresponds to an element en of B. We have enem = 0. Furthermore the quotient B′

of B by the relations en = 0 is such that Sp(B′) = 0 and hence 1 = 0 in B′, so we have N such that
1 = ∨i<Nei. □

In formal/point-free topology, we consider that a Boolean algebra B represents a Stone space Sp(B)
and a map Sp(B′) → Sp(B) is represented by a map B → B′; the map Sp(B′) → Sp(B) is then said to
be formally surjective if the corresponding map B → B′ is injective. In the topos of light condensed sets,
this becomes a true duality.
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Proposition 0.10 Markov’s Principle holds, if we have ¬∀nα(n) = 0 then we have ∃nα(n) = 1.

Proof Let B be the Boolean algebra presented by α(n). We have Sp(B) = ∅ and hence by duality B is
trivial, which means that we have n such that α(n) = 1. □

Axiom 2 (Surjections are Formal Surjections)
A map f : Sp(B′) → Sp(B) is surjective iff the corresponding map B → B′ is injective.

Another way to state this axiom is that epimorphisms in the category Stone are exactly the surjective
maps.

Yet another formulation is (¬¬X) → ∥X∥ for X Stone space. If we think of an algebra in Boole as a
proposition theory, this expresses a form of completness: any non inconsistent theory has a model.

An example of a surjective map (since it is an epimorphism, since it corresponds to a monomorphism
via the anti-equivalence between Stone and Boole) is the map sum of the maps N∞ → N∞ sending n to
2n (resp. n to 2n+ 1). This map has no section. This shows that N∞ is not projective.

Here is another way to formulate this result.

Proposition 0.11 LLPO is a consequence of Axioms 1 and 2.

Conversely, with Dependent Choice, LLPO implies Axiom 2, since it implies completeness of propo-
sitional logic.

A consequence of this characterisation of surjective maps is the following.

Proposition 0.12 The image of any map between two Stone types is Stone.

Here is an example showing how to use this axiom. A closed subset of a Stone set is given by a
countable intersection of decidable subset.

Proposition 0.13 Let f : X ′ → X a surjective map and Fn a decreasing sequence of closed subsets of
X ′ such that each restriction f|Fn

is surjective. Then if F = ∩nFn the restriction f|F is still surjective.

Proof Dually, we have an injective map i : B → B′ with an increasing sequence In of ideals of B′ such
that b = 0 if i(b) = 0 mod. In. The subset F corresponds to the ideal I = ∪nIn. If i(b) = 0 mod. I then
we have i(b) = 0 mod. In for some n and b = 0. □

Axiom 3 (Local choice)
Whenever X Stone and E ↠ X surjective, then there is some Y Stone, a surjection Y ↠ X and a map
Y → E such that the following diagram commutes:

E

X Y

(3)

The last axiom is Dependent Choice.

Axiom 4 (Dependent Choice)
Given a family of types En and Rn : En → En+1 → U such that for all n and x : En there exists y : En+1

with p : Rn x y then given x0 : E0 there exists u : Πn:NEn and v : Πn:NRn (u n) (u (n+1)) and u 0 = x0.

One basic result about the category Boole, the existence of retraction for non empty closed subset
inclusion holds only non constructively and in our setting we can prove the following.

Proposition 0.14 It is not the case that for all closed proposition p the inclusion 1 + p → 1 + 1 has a
retraction.

Proof This implies that all closed propositions are decidable and the proposition x = ∞ for x in N∞ is
a closed proposition which is not decidable. □

We can define the set Closed of closed propositions, where a proposition is closed iff it is equivalent
to the proposition ∀nα(n) = 0 for some α in 2N.

Theorem 0.15
Monomorphisms in Stone are classified by Closed.

We have seen that N∞ is not projective. Using Local and Dependent Choice, David noticed that
Scholze’s argument about Z[N∞] cannot be made internal.

Theorem 0.16
Z[N∞] is not projective in the category of Abelian Groups.
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1 Omniscience principles

Lemma 1.1 For (An) a family of decidable subsets, we have (
⋃

n:N An)
C =

⋂
n:N(A

C
n ) and

⋃
n:N(A

C
n ) =

(
⋂

n:N An)
C

Proof • Let x /∈
⋃

n:N An. Then for every n : N, we cannot have x ∈ An and thus x ∈ AC
n by

decidability of An. Thus x ∈
⋂

n:N(A
C
n ). Therefore

(
⋃
n:N

An)
C ⊆

⋂
n:N

(AC
n ).

• Suppose that for every n : N, we have x /∈ An. There does not exist an n : N with x ∈ An. Thus⋂
n:N

(AC
n ) ⊆ (

⋃
n:N

An)
C

• Suppose there exists some n with x ∈ AC
n . Then it cannot be the case that x ∈ Am for all m : N.

Thus ⋃
n:N

(AC
n ) ⊆ (

⋂
n:N

An)
C

• Suppose that x ∈ (
⋂

n:N An)
C . Then define the binary sequence α by α(i) = 1 iff i is the first index

such that x /∈ Ai. This is well-defined as An is decidable for all n : N. If α(i) = 0 for all i, then
x ∈ Ai for all i. Thus under our assumption x ∈ (

⋂
n:N An)

C , we cannot have that α(i) = 0 always.
By Markov, there then exists an i such that α(i) = 1. Thus x /∈ Ai for some i. We conclude that.

(
⋂
n:N

An)
C ⊆

⋃
n:N

(AC
n )

Note that we only needed decidability for the first and last bullet point, and only the last bullet point
used countability (and of course Markov’s principle).

2 Topology

Definition 2.1 The image of a map f : X → Y between types is given by

im(f) :≡
∑
y:Y

∃x:Xf(x) = y

and yields a factorization using the canonical maps:

X Y

im(f)

f

Proposition 2.2 The image im(f) of a map f : X → Y between stone spaces X = Spec(B), Y =
Spec(B′) is a subtype of the form Spec(B′/I) ⊆ Spec(B′) for a countably generated ideal I ⊆ B′.

Proof TODO □

Definition 2.3 (a) A proposition P is closed if there merely is a sequence s : 2N such that P is
equivalent to s = 0.

(b) Let X be an arbitrary type. A subtype C ⊆ X is closed if C(x) is a closed proposition for all x : X.

Proposition 2.4 Let X be a stone space and C ⊆ X a subset. Then the following are equivalent:
(i) C is closed.

(ii) C is a countable intersection of decidable subsets.

(iii) There is a countable family of functions (fi : X → 2)i:N such that

C = {x : X | ∀i.fi(x) = 0}.

Proof TODO using ?? and Proposition 2.2. □

4



2.1 Compact Hausdorff

Definition 2.5 Let S be Stone, C ⊆ S. Then C is open if it is the countable union of decidable subsets.

Lemma 2.6 For S Stone and C ⊆ S, C is closed iff it’s complement is open and C is open iff it’s
complement is closed.

Proof This follows from the fact that the complement of a decidable subset is decidable and Lemma 1.1.□

Lemma 2.7 For S Stone, any cover by opens merely has a finite subcover.

Proof Let S =
⋃

i:I Ai be a cover of S by open sets. Assume furthermore S = Sp(B). As every open is
the union of decidable subsets, we may assume Ai decidable, and thus corresponding to points ai ∈ B.
These points are such that 1 =

∨
i:I ai. As B is countably presented, it is countable. Thus (ai)i:I is

a countable set. The morphism I → B is surjective, and as we’re proving a proposition, we may use
type-theoretic AC to give a countable subset I0 ⊆ I such that

∨
i:I0

ai = 1 as well. So S =
⋃

i:I0
Ai for I0

countable. □

Note that the basic clopens are not the only clopens. I.e. not every set that is both a countable
intersection of decidable subsets and a countable union of decidable subset is itself decidable. In B∞, we
can describe the even numbers both as the infinite meet of cofinite sets excluding odd numbers up to n
and the join of finite sets including even numbers up to n. But the even numbers do not themselves for
an element of B∞. Thus the set of maps B → 2 sending every χ2n to 1 is clopen but not decidable.

Definition 2.8 We define a type X to be compact Hausdorff iff X is the quotient of a stone space S by
a closed equivalence relation. A subtype C ⊆ X is closed respectively open iff it’s pre-image under the
quotient map is.

Lemma 2.9 In a compact Hausdorff, closed sets are closed under intersection.

Lemma 2.10 In a Compact Hausdorff space, the complement of an open is closed, and the complement
of a closed is open.

Proof Let e : S → X be the quotient map of a Stone space by a closed equivalence relation. and let
(An)n:N be a countable family of decidable subsets in S.

First, we claim that X −
⋃

n:N e(An) is closed in X. □

Lemma 2.11 Whenever X is compact Hausdorff, F0, F1 are closed and disjoint, there exist G0, G1

disjoint clopen such that Fi ⊆ X −G1−i and G0 ∪G1 = X.

2.2 Intersection of closed in compact Hausdorff

Lemma 2.12 In a compact Hausdorff, closed sets are closed under intersection.

Proof

Lemma 2.13 For S Stone, D ⊆ S decidable, ∼ a closed equivalence relation on S, the set {x : S|∃y :
D(x ∼ y)} is closed.

Proof

Lemma 2.14 For S Stone, D ⊆ S decidable, ∼ a decidable equivalence relation on S, the set {x : S|∃y :
D(x ∼ y)} is closed.

Proof Let B = 2S , so S = Sp(B). As D is decidable, there is some n : N such that D(y) only depends
on y|n.

As ∼ is decidable, there is a finite set I0 ⊆ N, such that x ∼ y =
∏

i:I0
x(i) = y(i).

Thus
∃(y : D)(x ∼ y) = ||Σ(y : 2N)y(b) = 1 ∧

∏
(i : I0)x(i) = y(i)||

Lemma 2.15 Let S Stone, then D ⊆ S is closed iff D ⊆ S ⊆ 2N is closed.

Proof Follows immediately from countable intersection of basic clopen. □
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3 Analysis

3.1 Convergence

Topological convergence In this section, X is a Stone space.

Definition 3.1 A sequence in X is a map N → X.

Definition 3.2 Let α be a sequence in X. We say that x is the limit of α iff for any open U ⊆ X
containing x, there merely is an N : N such that for n ≥ N , we have xn ∈ U .

Closed spaces contain their limits

Lemma 3.3 Let x : 2N and D ⊆ 2N be a decidable subset. Suppose that for each open U ⊆ X with
U(x), we merely have some yU ∈ D ∩ U . Then x ∈ D.

Proof Because D is a subtype, x ∈ D is a proposition, and we will use existence whenever we have mere
existence. Because D is decidable, there merely exists an n : N such that whenever x =n y, we have
D(x) ↔ D(y). Consider the open Un given by x =n ·. By assumption, there merely is some y ∈ D ∩ Un.
so D(y) and x =n y, hence D(x). □

Corollary 3.4 Let ι : D ↪→ 2N be the inclusion map of a decidable subset, let α be a sequence in D, and
suppose that α ◦ ι has a limit x in 2N. Then x ∈ D.

Corollary 3.5 Using (ii) from Proposition 2.4 it follows that any closed subset of a Cantor space contains
all of it’s limit points.

Remark 3.6 The converse is not true. It is not the case that if a subset of a Stone space contains
its limits, it is necessarily closed. For any propostion p, we have the subset of Cantor space given by
A = {x : 2N|p}. If A was closed, p would be equivalent to a proposition of the form α = 0. However, not
all propositions are of this form. So A needn’t be closed. But if a sequence in A exists and has a limit,
because the sequence exists, p must hold and thus the limit is contained in A also.

Extensional convergence

Definition 3.7 Let B∞ be the Boolean algebra on countably many generators (pn)n:N over the equiva-
lence pn ∧ pm = 0 whenever n ̸= m.

Definition 3.8 We denote N∞ be the spectrum of B∞.

Lemma 3.9 B∞ is isomorphic with the Boolean algebra of finite/cofinite subsets of N.

Proof To go from B∞ to subsets of N, we send the generators pn to the singleton {n}, which are clearly
finite. We call the induced Boolean operation f .

To go from finite/cofinite subsets of N to B∞, a finite subset I of N is sent to the element
∨

i∈I pi,
and a cofinite subset J is sent to the element

∧
i∈JC ¬pi. We call this function g and we need to show

that g is a Boolean morphism.
• By deMorgan’s laws, g preserves ¬.
• To see that g respects ∨, we need to check three cases

– If both I, J are finite, then

g(I ∪ J) =
∨

i∈I∪J

pi =
∨
i∈I

pi ∨
∨
j∈J

pj (4)

– If both I, J are cofinite, we have

g(I) ∨ g(J) =
∧

i∈IC

¬pi ∨
∧

j∈JC

¬pj =
∧

i∈IC

∧
j∈JC

(¬pi ∨ ¬pj) (5)

Now note that ¬pi ∨ ¬pj = ¬(pi ∧ pj), which is 1 if i ̸= j and pi if i = j. We can leave 1 out
of the meet, and we are left with the intersection of IC and JC , so

g(I) ∨ g(J) =
∧

i∈(IC∩JC)

¬pi =
∧

i∈(I∪J)C

¬pi (6)

as the union of I and J is also cofinite, this equals g(I ∪ J).
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– If I is finite and J cofinite, we have

g(I) ∨ g(J) = (
∨
i∈I

pi) ∨ (
∧

j∈JC

¬pj) =
∧

j∈JC

(
∨
i∈I

(pi ∨ ¬pj)) (7)

If i ̸= j, then pi ∧ pj = 0, hence ¬pj ≥ pi and pi ∨ ¬pj = ¬pj If i = j, then pi ∨ ¬pj = 1.

• The case for ∧ is completely dual to the case for ∨.
We conclude that g is a Boolean morphism. Furthermore, g and f are clearly inverses, thus the Boolean
algebras are isomorphic. □

Lemma 3.10 Any element of B∞ can be written as either
∨

i∈I pi or as
∧

j∈J ¬pj for finite I, J ⊆ N.

Proof Remark that whenever n ̸= m, we have that ¬pn ≥ pm as pm ∧ pn = 0. □

There is canonical embedding N ↪→ N∞, wich sends n to the unique function χn sending pn to 1. We
denote ∞ ∈ N∞ for the function which is constantly 0. By Proposition 0.10, if an element is not ∞, it
comes from the embedding N ↪→ N∞.

Lemma 3.11 Let U be an open subset of N∞ containing ∞. Then there merely exists an N : N such
that whenever n ≥ N , χn ∈ U as well.

Proof It is sufficient to prove the lemma for U a basic open. Assume b : B∞ is such that U = {ϕ : B∞ →
2|ϕ(b) = 1}. Assume furthermore that ∞ ∈ U . by Lemma 3.10, b can have two forms. If b = ∨i∈Ipi,
then as ∞(b) = 0, we must have I = ∅, and thus b = 0, which means U is empty, contradicting ∞ ∈ U .
Therefore, b must be of the form ∧j∈J¬pj . Note that for N = max J +1, whenever n > J , χn sends b to
1. Thus χn ∈ U as well, and we are done. □

Definition 3.12 Let α be a sequence in X, we say that α is convergent iff there exists an extension.

N X

N∞

α

(8)

Proposition 3.13 A sequence is convergent iff it has a limit

Proof Let α be convergent, with extension α. we claim that α(∞) is a limit of α. Let U ⊆ X be an
open containing x. As α−1(U) is an open subset of N∞ containing ∞, Lemma 3.11 tells us there exists
some N such that [N,∞] ⊆ α−1(U). Thus there exists an N such that for n ≥ N , we have α(n) ∈ U , as
required.

Conversely, suppose α has limit x. Assume X = Sp(B), and let b ∈ B. Then b corresponds to a
decidable subset U ⊆ X. For any decidable subset U ⊆ X, we have α−1(U) a decidable subset of N.
We claim that α−1(U) is either finite or cofinite. As U is decidable, we can decide wheter x ∈ U . If
x ∈ U , α−1(U) is cofinite, as α(n) ∈ U for all n ≥ N for some N . If x /∈ U , we have x ∈ UC , which
is also decidable and therefore α−1(UC) is cofinite. As α−1(U)C = α−1(UC), it follows that α−1(U) is
finite. Thus α−1(U) is finite or cofinite for any decidable subset U ⊆ X. Finite and cofinite subsets of
N correspond to elements of B∞. Therefore, α induces a map B → B∞, which corresponds to a map
α : N∞ → X.

We claim that α extends α. Denote ι for the map N → N∞. We need to show that α ◦ ι = α. By
definition, we have that (α ◦ ι)−1(U) = α−1(U) for any decidable U ⊆ X. □

Lemma 3.14 Whenever S = Sp(B) Stone, f, g : A → S, and f−1(U) = g−1(U) for any decidable
U ⊆ S, we have f = g.

Proof By our assumption, we have for all a : A that f(a) ∈ U ⇐⇒ g(a) ∈ U for any decidable U ⊆ X.
Such U correspond to b : B. and f(a) ∈ U ⇐⇒ f(a)(b) = 1. So the functions f(a), g(a) : B → 2 are
such that f(a)(b) = g(a)(b) for all b : B. This holds for all a : A and by two uses of function extensionality
we may conclude f = g. □
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3.2 The interval

3.3 The Cauchy reals

The goal of this section is to introduce the real numbers in a constructive setting, following the definition
given in [BB85] with some small adaptations. We will later use this definition to show that the interval
[0, 1] is compact Hausdorff in the sense of ??.

We will assume we are given natural and rational numbers, with decidable (in)equalities working as
expected.

Definition 3.15 A Cauchy sequence is a sequence x : N → Q such that for any n,m : N, we have
|xn − xm| ≤ ( 12 )

n + ( 12 )
m.

Remark 3.16 If x is a cauchy sequence and q a rational number, the sequence (x − q)n = (xn − q) is
also Cauchy.

Following [BB85], we define inequality relations between Cauchy sequences and rational numbers.

Definition 3.17 For x a Cauchy sequence and q a rational number, we define

• x ≤ q = Πn:Nxn ≤ q + ( 12 )
n.

• x ≥ q = Πn:Nxn ≥ q − ( 12 )
n.

Lemma 3.18 For x a Cauchy sequence and q a rational number, we have x ≤ q ∨ x ≥ q.

Proof For rational numbers, we have decidable inequalities, therefore ≥ 0 ∨ q ≤ 0. It follows that
∀(n : N)∀(m : N)q ≥ −( 12 )

n ∨ q ≤ ( 12 )
m. Now by ??, we may conclude (∀(n : N)q ≥ −( 12 )

n) ∨ (∀(m :
N)q ≤ ( 12 )

m) as required. □

Definition 3.19 Given two Cauchy sequences p = (pn)n∈N, q = (qn)n∈N, we define the proposition
p ∼C q as

p ∼C q := ∀(n,m : N)((|pn − qm| ≤ (
1

2
)n + (

1

2
)m)) (9)

Definition 3.20 The type of Cauchy reals is given by the type of Cauchy sequences modulo ∼C .

We claim that the inequality in ?? extends to a well-defined inequality between Cauchy reals and
rational numbers.

Furthermore, we claim that Πx:RΠq:Qx ≤ q ∨ x ≥ q.

Definition 3.21 A Cauchy sequence in the interval is a Cauchy sequence x such that for any n : N, we
have 0 ≤ xn ≤ 1. The interval of Cauchy reals is given by the type of Cauchy sequences in the interval
modulo ∼C . We denote it by [0, 1].

We want to show that the interval of Cauchy reals is Compact Hausdorff. Informally, to any binary
sequence α : N → 2, we can associate a Cauchy sequence

n 7→
n∑

i=0

α(i)

2i+1
(10)

and we are going to give a closed relation on Cantor space such that two binary sequences are equivalent
iff they correspond to the same Cauchy reals. First, we’ll need some notation.

Definition 3.22 Given a binary sequence α : N → 2 and a natural number n : N we denote α|n : N≤n →
2 for the restriction of α to a finite sequence of length n. We denote 0, 1 for the binary sequences which
are constantly 0 and 1 respectively. We denote 0, 1 for the sequences of length 1 hitting 0, 1 respectively.
If x is a finite sequence and y is any sequence, denote x · y for their concatenation.

Now we’ll give a definition for when two finite binary sequences of length n correspond to real numbers
whose distance is ≤ ( 12 )

n. Basically, we want for every finite sequence z that (z · 0 · 1) and (z · 1 · 0) are
equivalent.
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Definition 3.23 Now let n : N and x, y : N≤n → 2 be two sequences of length n. We say x, y are near
if we have an m : N with m ≤ n and some a : N≤m → 2, such that one of (a · 0 · 1)|n, (a · 1 · 0)|n is equal
to x and the other is equal to y. We denote nearn(x, y) if x, y are near. To be precise, we define

nearn(x, y) = Σ(m : N)m ≤ n∧Σ(a : Finm → 2)

((
(x, y) = ((a·0·1)|n, (a·1·0)|n)

)∨(
(y, x) = ((a·0·1)|n, (a·1·0)|n)

))
(11)

Remark 3.24 Remark that when x, y are near, m and a as above are unique. Thus nearn(x, y) is
a proposotion. Furthermore, to check whether x, y are near, we need only make n comparisons, thus
nearn(x, y) is decidable. Note that in the above definition, we allow m = n and therefore x is near to
itself for any finite sequence x. Furthermore, we have defined nearness to be symmetric. However, it is
not a transtive relation. After all, the sequence 010 and 011 are near and the sequence 011 and 100 are
near, but 010 is not near to 100. This corresponds to the fact that 1

4 and 3
8 are distance ≤ ( 12 )

3 apart,
and so are 3

8 and 1
2 , but

1
4 and 1

2 are not.

Definition 3.25 We define the following relation on Cantor space for α, β : 2N.

α ∼t β = ∀(n : N)nearn(α|n, β|n) (12)

Lemma 3.26 ∼t is a closed equivalence relation.

Proof Let α, β, γ : 2N. As the dependent product of propositions is a proposition, α ∼t β is a proposition.
Furthermore, the closedness follows from decidability of nearn(α|n, β|n). One could define γ(n) = 1 iff
nearn(α|n, β|n)

As nearness is reflexive and symmetric, so is ∼t.
Now suppose α ∼t β and β ∼t γ. We claim that α ∼t γ.
Let n : N, we need to show that nearn(α|n, γ|n). Let (a,m) witness that nearn(α|n, β|n). and let

(b, k) witness that nearn(β|n, γ|n) We will make a case distinction on whether one of m, k is equal to n,
or both are strictly smaller than n.

• If m = n, we have that α|n = β|n, and therefore

nearn(β|n, γ|n) ↔ nearn(α|n, γ|n) (13)

The above also holds if k = n.

• If m < n, we have that α(m + 1) ̸= β(m + 1), thus α|l ̸= β|l for all l > m, but we still have
nearl(α|l, β|l) for these l. Therefore (α, β) or (β, α) must be of the form (a · 0 · 1, a · 1 · 0). WLOG,
we assume α = a · 0 · 1, and thus β = a · 1 · 0 (if not, we could do bitflips).

As k < n also, by the same argument there is some b such that one of (β, γ), (γ, β) is equal to
(b · 0 · 1, b · 1 · 0). However, β is also of the form a · 1 · 0, and thus cannot also be of the form b · 0 · 1.
Therefore we must have β = b · 1 · 0 and γ = b · 0 · 1.
But now b · 1 · 0 = a · 1 · 0, The lengths of a, b cannot be unequal, and by decidablity of natural
numbers, a, b have the same length and it follows that a = b. Therefore α = γ, so α ∼t γ.

We conclude that ∼t is a closed equivalence relation. □

Lemma 3.27 b sends ∼n equivalent binary sequences to ∼C equivalent Cauchy sequences.

Proof Let α, β be binary sequences. We claim that |b(α)n − b(β)n| ≤ ( 12 )
n+1 whenever nearn(α, β). It

will follow that if α ∼n β, then b(α) ∼C b(β).
Let n : N and assume m : N with m ≤ n and let z be a sequence of length m such that α|n = z · 1 · 0|n

and β|n = z · 0 · q|n. then b(α)n =
∑

i≤m
z(i)
2i+1 + ( 12 )

m+2 and b(β)n =
∑

i≤m
z(i)
2i+1 +

∑
m+2≤i≤n

( 12 )
i+1. Thus

b(α)n − b(β)n = ( 12 )
m+2 −

∑
m+2≤i≤n

( 12 )
i+1 = ( 12 )

n+1, which is smaller than required. □

Lemma 3.28 Whenever b(α) ∼C b(β), we have α ∼n β.

Proof Assume b(α) ∼C b(β). Let n : N. We shall show that nearn(α, β).
As we’re only checking finitely many entries, we either have α|n = β|n, or there exists a smallest

m ≤ n with α(m) ̸= β(m).
If α|n = β|n, we have nearn(α, β) and are done. WLOG assume α(m) = 1, β(m) = 0 for m minimal.
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Now note that

b(α)k+1 − b(β)k+1 = b(α)k − b(β)k +
α(k + 1)− β(k + 1)

2k+2
. (14)

For k > m, we have that

|b(α)k − b(β)k| = |(1
2
)m+1 +

k∑
i=m+1

α(i)− β(i)

2i+1
|. (15)

Note that the right summand is always ≤ ( 12 )
m+1. Therefore, we can leave out the absolute value function.

We claim that for every k ≥ m+1, we have α(k) = 0, β(k) = 1. We will use induction. Suppose that
for every m < i < j, we have α(i) = 0, and β(i) = 1. Then

b(α)j−1 − b(β)j−1 = (
1

2
)m+1 +

j−1∑
i=m+1

−1

2i+1
= (

1

2
)j (16)

• we claim that α(j) = 0 Suppose α(j) = 1. Then α(j)− β(j) ≥ 0. And for j + 2, we have that

b(α)j+2 − b(β)j+2 (17)

=(b(α)j−1 − b(β)j−1)+
α(j)− β(j)

2j+1
+
α(j + 1)− β(j + 1)

2j+2
+

α(j + 2)− β(j + 2)

2j+3
(18)

≥(
1

2
)j+ 0+

−1

2j+2
+

−1

2j+3
(19)

>(
1

2
)j+1 (20)

which contradicts b(α) ∼C b(β), which would require that |b(α)j+2 − b(βj+2| ≤ ( 12)
j+2

+ ( 12 )
j+2 =

( 12 )
j+1. Therefore α(j) ̸= 1, and thus α(j) = 0.

• We also claim that β(i) = 1. If β(i) = 0, we also have α(j)− β(j) ≥ 0, and the rest of the proof is
similar as above. □

Lemma 3.29 The map b : 2N → [0, 1] is surjective.

Proof First, suppose we have a function d : Πx:RΠq:Q(x ≤ q + x ≥ q) Then we could recursively define

α(n) =

0 if d(x−
∑
i<n

α(i)
2i+1 ,

1
2n+1 ) = inl(·)

1 otherwise

Note that

α(n) =

{
0 if d(x− b(α)n−1,

1
2n+1 ) = inl(·)

1 otherwise

We’ll show by induction that b(α)n ≤ x for every n : N. First b(α)0 = 0 ≤ x. Assuming, b(α)k ≤ x, for
b(α)k+1, there are two cases:

• if d(x− b(α)k,
1

2n+1 ) = inl(·), then b(α)k+1 = b(α)k, which is ≤ x by induction hypothesis.

• Otherwise, x − b(α)k ≥ ( 12 )
k+1 So x − b(α)k − ( 12 )

k+1 ≥ 0, and b(α)k+1 = b(α)k + ( 12 )
k+1. So

x− b(α)k+1 ≥ 0, and b(α)k+1 ≤ x as required.
So by induction b(α)n ≤ x for every n : N. Therefore, |x− b(α)n| = x− b(α)n.

We shall also show by induction that x − b(α)n ≤ ( 12 )
n+1 for every natural number n : N. For

n = 0, this follows from the assumption that x ≤ 1. Suppose that x− b(α)k ≤ ( 12 )
k+1. We make a case

distinction on the form of d(x− b(α)k, (
1
2 )

k+2).
• If d(x− b(α)k, (

1
2 )

k+2) = inl(·), then x− b(α)k ≤ ( 12 )
k+2, and b(α)k+1 = b(α)k, and x− b(α)k+1 ≤

( 12 )
k+2 as well, as required.

• Otherwise, we must have x − b(α)k ≥ ( 12 )
k+2, and b(α)k+1 = b(α)k + ( 12 )

k+1. By induction
hypothesis, we have x− b(α)k ≤ ( 12 )

k+1. Thus

x− b(α)k+1 = x− b(α)k − (
1

2
)k+1 ≤ (

1

2
)k+1 − (

1

2
)k+2 = (

1

2
)k+2 (21)

as required.
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By induction, we conclude that |b(α)n − x| ≤ ( 12 )
n+1 for every n : N. Therefore b(α) converges to x.

We may conclude that Πx:[0,1]Πq:Q(x ≤ q+ x ≥ q) implies that we can give for each x : [0, 1] a binary
sequence α with b(α) = x. As we have the propositional trunctation of the premise by Lemma 3.18, we
may conclude that for each x : [0, 1] there merely exists α with b(α) = x. Therefore b is surjective. □

Theorem 3.30
The interval of Cauchy reals is isomorphic to 2N/ ∼t.

Proof This follows from the fact that b : 2N is such that α ∼n β iff b(α) ∼t b(β). and for every Cauchy
real, there is a binary sequence being sent to it, so the composition of b and the quotient from Caucy
sequences to Cauchy real is a surjection. □

Corollary 3.31 The interval is compact Hausdorff.
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