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We give a very quick overview of Synthetic Stone Duality.

1 Axioms

Definition 1.1 For B a countably presented Boolean algebra, we define Sp(B) as the set of Boolean
morphisms from B to 2.

Definition 1.2 Given a type X, we say that it is Stone if there exists a countably presented boolean
algebra B such that:

X = Sp(B)

Axiom 1 (Stone duality)
For any countably presented Boolean algebra B, the evaluation map B → 2Sp(B) is an isomorphism.

Axiom 2 (Surjections are formal Surjections)
A map f : Sp(B′)→ Sp(B) is surjective if and only if the corresponding map B → B′ is injective.

Axiom 3 (Local choice)
Whenever S Stone and E ↠ S surjective, then there exists some T Stone, a surjection T ↠ S and a map
T → E such that the following diagram commutes:

E

S T

(1)

Axiom 4 (Dependent choice)
Given a sequence of surjections:

X0 X1 X2 · · ·

we have an induced surjection:

X0 lim←−Xk

We define the type Boole of countably presented Boolean algebras, the type Stone of Stone spaces.
A type X is Compact Hausdorff iff we can find S : Stone with a surjective map S → X such that the

kernel S ×X S is Stone. We write CHaus the type of Compact Hausforff spaces.

2 Omniscience Principles

A proposition is open iff it is of the form ∃nan with an decidable. It is closed if it is of the form ∀nan
with an decidable. We write Open (resp. Closed) the set of open (resp. closed) propositions.

Theorem 2.1 (The negation of the weak limited principle of omniscience)
It is not the case that for all α : N→ 2 we can decide whether ∀(n : N). α(n) = 0.

Theorem 2.2 (Markov’s principle)
For all α : N→ 2, we have that:

¬(∀(n : N). α(n) = 0)→ ∃(n : N). α(n) = 1
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This can be rephrased as: the negation of a closed proposition is open. It is direct that the negation
of an open proposition is closed.

It follows that both open and closed propositions are not not stable. (They are not decidable in
general.)

Definition 2.3 Let N∞ be the type of sequence:

α : N→ 2

where α has value 1 at most one. We have N∞ : Stone.

Theorem 2.4 (The lesser limited principle of omniscience (LLPO))
For α : N∞, we have that

(∀(k : N). α(2k) = 0) ∨ (∀(k : N). α(2k + 1) = 0) (2)

This can be rephrased as the fact that the map N∞+N∞ → N∞ sending inl(α) to λkα(2k) and inr(α)
to λkα(2k + 1) is surjective.

Since this map has no section, this shows that N∞ is not projective. (David Wärn has noticed that
Z[N∞] is not internally projective in the category of Abelian groups.)

Yet another formulation of LLPO is that the disjunction of two closed propositions is closed. It is
also equivalent to Brouwer’s fixed point theorem and to Weak König’s Lemma.

Still another formulation of LLPO is completness of propositional logic. Another way to state Axiom
2 is that ¬¬S → ∥S∥ for S : Stone.

3 Topology

Theorem 3.1
If B is a Boolean algebra we have B : Boole iff B = lim−→Bn with Bn finite Boolean algebra. We have
S : Stone iff S = lim←−Sn with Sn finite sets.

Theorem 3.2
If S : Stone, a subset F : Stone is a countable intersection of decidable subsets iff it is classified by Closed.
It is a countable disjunction of decidable subsets iff it is classified by Open. If S : Stone and x0, x1 : S
then x0 =S x1 is closed. If P is a proposition then P : Closed iff P : Stone iff P : CHaus.

Theorem 3.3
If X : CHaus with a surjective map S → X with S ×X S : Stone, a subset of X is classified by a Closed
iff it is the image of a closed subset of S.

Definition 3.4 The unit interval [0, 1] is the image of Cantor space by the map α 7→ Σnα(n)/2
n.

Any map f : Y → X is continuous in the sense that the inverse image of an open subset of X is an
open subset of Y .

Theorem 3.5
If S : Stone two disjoint closed subsets of S are separated by a decidable subset. If X : CHaus and A,B
are two disjoint closed subsets of X, then there exists disjoint open subsets U, V of X such that A ⊆ U
and B ⊆ V .

Theorem 3.6
If X : CHaus and Fn is a decreasing sequence of closed subsets of X such that ∩nFn = ∅ then there exists
n such that Fn = ∅. If Un is an increasing sequence of open subsets of X such that X = ∪nUn then there
exists n such that X = Un.

4 Directed Univalence

Based on Barton-Commelin axioms.

Definition 4.1 A type is overtly discrete if it merely is a sequential colimit of finite type.
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We write ODisc for the type of overtly discrete sets.

Proposition 4.2 If E : ODisc and e0, e1 : E then e0 =E e1 is open. If P is a proposition, then P : ODisc
iff P : Open.

Proposition 4.3 If B is a Boolean algebra, we have B : Boole iff B : ODisc.

Theorem 4.4
Given X,Y : ODisc, the fiber of the map:

(Open→ ODisc)→ ODisc×ODisc

P 7→ (P (⊥), P (⊤))

over (X,Y ) is:
X → Y

Intuitively this means that the type of open propositions is a directed interval for overtly discrete
types.

In particular, any map Open→ Open is monotone.

Theorem 4.5 (Tychonoff)
If E : ODisc and X : E → CHaus then ΠEX : CHaus. If X : CHaus and E : X → ODisc then ΠXE : ODisc.
In particular if E : X → Open then ΠXE : Open.

5 Cohomology

Theorem 5.1
Let S be a Stone space, then for all i > 0 we have

Hi(S,Z) = 0

If X : CHaus and S : Stone with S → X surjective, of fiber Sx for x : X, we can consider the cochain
complex

Πx:XZSx → Πx:XZSx×Sx → Πx:XZSx×Sx×Sx → . . .

then the cohomology groups Hn(X,Z), in the sense of univalent type theory, are exactly the cohomology
groups of this cochain complex. In particular, we have the following.

Proposition 5.2 For all i > 0 we have

Hi([0, 1],Z) = 0

Similar to real-cohesion, we can construct a shape modality, which we expect to map finite CW-
complexes to their fundamental ∞-groupoids:

Definition 5.3 S is the modality given by nullification at the interval [0, 1].

Proposition 5.4 The shape of the topological circle S1 :≡ R/Z is the higher inductive circle:

S(S1) = K(Z, 1) = S1

Since K(Z, n) is S-modal, we also have:

Hn(S1,Z) = Hn(SS1,Z) = Hn(S1,Z)

So we can use computations in plain homotopy type theory to get:

H1(S1,Z) = Z
Hn(S1,Z) = 0 for n > 1
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