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Abstract

The language of homotopy type theory has proved to be appropriate as an internal language for
various higher toposes, for example with Synthetic Algebraic Geometry for the Zariski topos. In
this paper we apply such techniques to the higher topos corresponding to the light condensed sets
of Dustin Clausen and Peter Scholze. This seems to be an appropriate setting to develop synthetic
topology, similar to the work of Mart́ın Escardó. To reason internally about light condensed sets, we
use homotopy type theory extended with 4 axioms. Our axioms are strong enough to prove Markov’s
principle, LLPO and the negation of WLPO. We also define a type of open propositions, inducing
a topology on any type. This leads to a synthetic topological study of (second countable) Stone
and compact Hausdorff spaces. Indeed all functions are continuous in the sense that they respect
this induced topology, and this topology is as expected for these class of types. For example, any
map from the unit interval to itself is continuous in the usual epsilon-delta sense. We also use the
synthetic homotopy theory given by the higher types of homotopy type theory to define and work
with cohomology. As an application, we prove Brouwer’s fixed-point theorem internally.

(This is a partially outdated version, which is kept because it contains statements and proofs which
are not in the current, shorter version. )
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Introduction

The language of homotopy type theory is a dependent type theory enriched with the univalence axiom
and higher inductive types. It has proven exceptionnally well-suited to develop homotopy theory in a
synthetic way [Pro13]. It also provides the precision needed to analyze categorical models of type theory
[Wei24]. Moreover, the arguments in this language can be rather directly represented in proof assistants.
We use homotopy type theory to give a synthetic development of topology, which is analogous to the
work on synthetic algebraic geometry [CCH23].

We introduce four axioms which seem sufficient for expressing and proving basic notions of topol-
ogy, based on the light condensed sets approach, introduced in [CS24]. Interestingly, this development
establishes strong connections with constructive mathematics [BB85], particularly constructive reverse
mathematics [Ish06; Die18]. Several of Brouwer’s principles, such that any real function on the unit
interval is continuous, or the celebrated fan theorem, are consequences of this system of axioms. Fur-
thermore, we can also prove principles that are not intuitionistically valid, such as Markov’s Principle,
or even the so-called Lesser Limited Principle of Omniscience, a principle well studied in constructive
reverse mathematics, which is not valid effectively.

This development also aligns closely with the program of Synthetic Topology [Esc04; Leš21]: there
is a dominance of open propositions, providing any type with an intrinsic topology, and we capture in
this way synthetically the notion of (second-countable) compact Hausdorff spaces. While working on this
axiom system, we learnt about the related work [BC], which provides a different axiomatisation at the
set level. We show that some of their axioms are consequences of our axiom system. In particular, we
can introduce in our setting a notion of “Overtly Discrete” spaces, dual in some way to the notion of
compact Hausforff spaces, like in Synthetic Topology1.

A central theme of homotopy type theory is that the notion of type is more general than the notion
of set. We illustrate this theme here as well: we can form in our setting the types of Stone spaces and
of compact Hausdorff spaces (types which don’t form a set but a groupoid), and show these types are
closed under sigma types. It would be impossible to formulate such properties in the setting of simple
type or set theory. Additionally, leveraging the elegant definition of cohomology groups in homotopy
type theory [Pro13], which relies on higher types that are not sets, we prove, in a purely axiomatic way,
a special case of a theorem of Dyckhoff [Dyc76], describing the cohomology of compact Hausdorff spaces.
This characterisation also supports a type-theoretic proof of Brouwer’s fixed point theorem, similar to
the proof in [Shu18]. In our setting the theorem can be formulated in the usual way, and not in an
approximated form.

It is important to stress that what we capture in this axiomatic way are the properties of light
condensed sets that are internally valid. David Wärn [Wär24] has proved that an important property of
abelian groups in the setting of light condensed sets, is not valid internally and thus cannot be proved
in this axiomatic context. We believe however that our axiom system can be convenient for proving the
results that are internally valid, as we hope is illustrated by the present paper. We also conjecture that
the present axiom system is actually complete for the properties that are internally valid. Finally, we
think that this system can be justified in a constructive metatheory using the work [CRS21].

Acknowledgements

The idea to use the topological characterization of stone spaces as totally disconnected, compact Haus-
dorff spaces to prove Theorem 4.3.7 was explained to us by Mart́ın Escardó. More precisely, he gave us
a proof of the following topological theorem, which we were able to adapt to our setting:

Theorem

1We actually have a derivation of their “directed univalence”, but this will be presented in a following paper.
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If f : X → S is a continuous map into a Stone space and all fibers of f are Stone spaces, then the
topological space X is totally disconnected.

David Wärn noticed that Markov’s principle (Theorem 1.4.2) holds.

1 Stone duality

1.1 Preliminaries

Definition 1.1.1 A type is countable iff it is merely equal to some decidable subset of N.

Definition 1.1.2 A countably presented Boolean algebra B is a Boolean algebra such that there merely
are countable sets I, J , a set of generators gi, i ∈ I and a set fj , j ∈ J of Boolean expressions over these
generators such that B is equivalent to the quotient of the free Boolean algebra over the generators by
the relations fj = 0. We denote this algebra by 2[I]/(fj)j:J .

Remark 1.1.3 Note that any countably presented algebra is also merely of the form 2[N]/(rn)n:N.

Remark 1.1.4 We denote the type of countably presented Boolean algebras Boole. Note that this type
does not depend on a choice of universe. Also note Boole has a natural category structure.

Example 1.1.5 If both the set of generators and relations are empty, we have the Boolean algebra 2.
The underlying set is {0, 1} and 0 ̸=2 1. 2 is initial in Boole.

Definition 1.1.6 For B a countably presented Boolean algebra, we define Sp(B) as the set of Boolean
morphisms from B to 2. Any type which is merely equivalent to a type of the form Sp(B) is called a
Stone space.

Example 1.1.7 (i) There is only one Boolean map 2 → 2, thus Sp(2) is the singleton type ⊤.

(ii) The tivial Boolean algebra is given by 2/(1). We have 0 = 1 in the trivial Boolean algebra. As there
cannot be a map from the trivial Boolean algebra into 2 preserving both 0, 1, the corresponding
Stone space is the empty type ⊥.

(iii) We denote by C the Boolean algebra 2[N]. In this case Sp(C) is Cantor space: 2N, the set of binary
sequences. If α : 2N and n : N we write α(n) for α(gn).

(iv) We denote B∞ for the Boolean algebra generated by (gn)n:N quotiented by the relations gm∧gn = 0
for n ̸= m. A morphism B∞ → 2 corresponds to a function N → 2 that hits 1 at most once. We
denote Sp(B∞) = N∞. For α : N∞ and n : N we denote α(n) for α(gn). By conjunctive normal
form, any element of B∞ can be written uniquely as

∨
i∈I gn or as

∧
i∈I ¬gn for some finite I ⊆ N.

If I = ∅, then ∨i∈Igi = 0,
∧

i∈I ¬gi = 1.

Lemma 1.1.8 For α : 2N, we have an equivalence of propositions:

(∀n:Nα(n) = 0) ↔ Sp(2/(α(n))n:N).

Proof There is at most one x : 2 → 2, and it can only satisfy x(α(n)) = 0 for all n : N iff α(n) ̸=2 1 for
all n : N. As 2 has underlying set {0, 1}, we have (α(n) ̸=2 1) → (α(n) =2 0). □

1.2 Axioms
Axiom 1 (Stone duality)
For any countably presented Boolean algebra B, the evaluation map B → 2Sp(B) is an isomorphism.

Axiom 2 (Surjections are formal surjections)
For g : B → C a map in Boole, g is injective iff (−) ◦ g : Sp(C) → Sp(B) is surjective.

Axiom 3 (Local choice)
Whenever we have B : Boole, and some type family P over Sp(B) with Πs:Sp(B)||Ps||, then there merely
exists some C : Boole and surjection q : Sp(C) → Sp(B) with Πt:Sp(C)P (q(t)).

Axiom 4 (Dependent choice)
Given a family of types (En)n:N and a relation Rn : En → En+1 → U such that for all n and x : En there
exists y : En+1 with p : Rn x y then given x0 : E0 there exists u : Πn:NEn and v : Πn:NRn (un) (un+1)
and u0 = x0.
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1.3 Anti-equivalence of Boole and Stone

By Axiom 1, Sp is an embedding from Boole to any universe of types. We denote it’s image by Stone.

Remark 1.3.1 Stone types will take over the role of affine scheme from [CCH23], and we repeat some
results here. Analogously to Lemma 3.1.2 of [CCH23], for X Stone, Stone duality tells us that X =
Sp(2X). Proposition 2.2.1 of [CCH23] now says that Sp gives a natural equivalence

HomBoole(A,B) = (Sp(B) → Sp(A)) (1)

Stone also has a natural category structure. By the above and Lemma 9.4.5 of [Pro13], the map Sp defines
a dual equivalence of categories between Boole and Stone. In particular the spectrum of any colimit in
Boole is the limit of the spectrum of the opposite diagram.

Remark 1.3.2 Local choice can also be formulated as follows: whenever we have S : Stone, E,F
arbitrary types, a map f : S → F and a surjection e : E ↠ F , there exists a Stone space T , a
surjective map T ↠ S and an arrow T → E making the following diagram commute:

T E

S F

e

f

(2)

Lemma 1.3.3 For B : Boole, we have 0 =B 1 iff ¬Sp(B).

Proof If 0 =B 1, there is no map B → 2 respecting both 0 and 1, thus ¬Sp(B). Conversely, if ¬Sp(B),
then Sp(B) equals ⊥, the spectrum of the trivial Boolean algebra. As Sp is an embedding, B is equivalent
to the trivial Boolean algebra, hence 0 =B 1. □

Corollary 1.3.4 For S : Stone, we have that ¬¬S → ||S||

Proof Let B : Boole and suppose ¬¬Sp(B). Let f : 2 → B. If f(0) = f(1) then 0 = 1 in B, thus
¬Sp(B), contradicting our assumption. Hence f(0) ̸= f(1). Hence by case distinction on 2 we can show
that f is injective. By Axiom 2 the map Sp(B) → Sp(2) is surjective, thus Sp(B) is merely inhabited.□

1.4 Principles of omniscience

In constructive mathematics, we do not assume the law of excluded middle (LEM). There are some
principles called principles of omniscience that are weaker than LEM, which can be used to describe how
close a logical system is to satisfying LEM. References on these principles include [Die18; Ish06]. In this
section, we will show that two of them (MP and LLPO) hold, and one (WLPO) fails in our system.

Theorem 1.4.1 (The negation of the weak lesser principle of omniscience (¬WLPO))

¬∀α:2N((∀n:Nα(n) = 0) ∨ ¬(∀n:Nα(n) = 0)) (3)

Proof Let f : 2N → 2 such that f(α) = 0 iff ∀n:Nα(n) = 0. By Axiom 1, there is some c : C with
f(α) = 0 ↔ α(c) = 0. We can express c using finitely many generators (gn)n≤N . Now consider β, γ : 2N

given by β(gn) = 0 for all n : N and γ(gn) = 0 iff n ≤ N . As β, γ are equal on (gn)n≤N , we have
β(c) = γ(c). However, f(β) = 0 and f(γ) = 1, giving a contradiction as required. □

The following result is due to David Wärn:

Theorem 1.4.2 (Markov’s principle (MP))
For α : N∞, we have that

(¬(∀n:Nα(n) = 0)) → Σn:Nα(n) = 1 (4)

Proof By Lemma 1.1.8, we have that ¬(∀n:Nα(n) = 0) implies that Sp(2/(α(n))n:N is empty. Hence
2/(α(n))n:N is trivial by Lemma 1.3.3. Then there is a finite subset N0 ⊆ N with

∨
i:N0

α(i) = 1. As
α(i) ∈ {0, 1} and α(i) = 1 for at most one i : N, there exists an unique n ∈ N with α(n) = 1. □

Corollary 1.4.3 For α : 2N, we have that

(¬(∀n:Nα(n) = 0)) → Σn:Nα(n) = 1 (5)
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Proof Given α : 2N, consider the sequence α′ : N∞ satisfying α′(n) = 1 iff n is minimal with α(n) = 1.
Then apply the above theorem. □

Theorem 1.4.4 (The lesser limited principle of omniscience (LLPO))
For α : N∞, we have that

∀k:Nα(2k) = 0 ∨ ∀k:Nα(2k + 1) = 0 (6)

Proof Define f : B∞ → B∞ ×B∞ on generators as follows:

f(gn) =

{
(gk, 0) if n = 2k

(0, gk) if n = 2k + 1
(7)

Note that f is well-defined as map in Boole as f(gn) ∧ f(gm) = 0 whenever m ̸= n. We claim that f is
injective. If I ⊆ N, write I0 = {k ∈ N|2k ∈ I}, I1 = {k ∈ N|2k + 1 ∈ I}. Recall that any x : B∞ is of the
form

∨
i∈I gi or

∧
i∈I ¬gi.

• If x =
∨

i∈I gi, then f(x) = (
∨

i∈I0
gi,
∨

i∈I1
(gi)). So if f(x) = 0, then I0 = I1 = I = ∅ and x = 0.

• Suppose x =
∧

i∈I ¬gi. Then f(x) = (
∧

i∈I0
¬gi,

∧
i∈I1

¬gi), so f(x) ̸= 0.
By Axiom 2, f corresponds to a surjection s : N∞ + N∞ → N∞. Thus for α : N∞, there exists some
x : N∞ + N∞ such that sx = α. If x = inl(β), for any k : N, we have that

α(2k + 1) = s(x)(2k + 1) = x(f(g2k+1)) = inl(β)(0, gk) = β(0) = 0.

Similarly, if x = inr(β), we have α(2k) = 0 for all k : N. Thus Equation (6) holds for α as required. □

The surjection s : N∞ + N∞ → N∞ as above does not have a section as the following shows:

Lemma 1.4.5 The function f as in Equation (7) does not have a retraction.

Proof Suppose r : B∞×B∞ → B∞ is a retraction of f . Then r(0, gk) = g2k+1, r(gk, 0) = g2k. Note that
r(0, 1) : B∞ is expressable using only finitely many generators (gn)n≤N Note that r(0, 1) ≥ r(0, gk) =
g2k+1 for all k : N. As a consequence, r(0, 1) cannot be of the form

∨
i∈I gi By similar reasoning so does

r(1, 0).But this contradicts

r(0, 1) ∧ r(1, 0) = r((1, 0) ∧ (0, 1)) = r(0, 0) = 0

Thus no retraction exists. □

1.5 Open and closed propositions

In this section we will introduce a topology on the type of propositions, and study their logical properties.
We think of open and closed propositions respectively as countable disjunctions and conjunctions of
decidable propositions. Such a definition is universe-independent, and can be made internally.

Definition 1.5.1 We define the types Open,Closed of open and closed propositions as follows:
• A proposition P is open iff there merely exists some α : 2N such that P ↔ ∃n:Nα(n) = 0.

• A proposition P is closed iff there merely exists some α : 2N such that P ↔ ∀n:Nα(n) = 0.

Remark 1.5.2 The negation of an open proposition is closed, and by MP (Theorem 1.4.2), the negation
of a closed proposition is open. Also by MP, we have ¬¬P → P whenever P is open or closed. By the
negation of WLPO (Theorem 1.4.1), not every closed proposition is decidable. Therefore, not every open
proposition is decidable. Every decidable proposition is both open and closed.

Lemma 1.5.3 Closed propositions are closed under countable conjunctions.

Proof Let (Pn)n:N be a countable family of closed propositions. By countable choice, for each n : N we
have an αn : 2N such that Pn ↔ ∀m:Nαn(m) = 0. Consider a surjection s : N → N× N. Let

β(k) = απ0(s(k))(π1(s(k))).

Note that ∀k:Nβ(k) = 0 iff ∀m,n:Nαm(n) = 0, which happens iff ∀n:NPn. Hence the countable conjunction
of closed propositions is closed. □
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Lemma 1.5.4 Open propositions are closed under countable disjunctions.

Proof Similar to the previous lemma. □

Corollary 1.5.5 If a proposition is both open and closed, it is decidable.

Proof If P is open and closed, by Remark 1.5.2, ¬P is open. By Lemma 1.5.4, it follows P ∨ ¬P is
open, hence equivalent to ¬¬(P ∨ ¬P ) by Remark 1.5.2. As the latter proposition is provable, we may
conclude P is decidable. □

Lemma 1.5.6 Closed propositions are closed under finite disjunctions.

Proof This statement is equivalent to LLPO (Theorem 1.4.4)by Proposition 1.4.1 of [Die18]. □

Lemma 1.5.7 For (Pn)n:N a sequence of closed propositions, we have ¬∀n:NPn ↔ ∃n:N¬Pn.

Proof It is always the case that ∃n:N¬Pn → ¬∀n:NPn. For the converse direction, note that ¬∃n:N¬Pn(x) →
∀n:N¬¬Pn(x). By Remark 1.5.2, ¬¬Pn(x) ↔ Pn(x) for all n : N. It follows that ¬∀n:NPn(x) →
¬¬∃n:N¬Pn(x). As ∃n:N¬Pn(x) is a countable disjunction of open propositions, it is open by Lemma 1.5.4
and thus equivalent to ¬¬∃n:N¬Pn(x) by Remark 1.5.2. We conclude that ¬∀n:NPn → ∃n:N¬Pn as
required. □

Lemma 1.5.8 If P is open and Q is closed, P → Q is closed. Also, if P is closed and Q open, then
P → Q is open.

Proof Assume P open and Q closed, the other proof is similar. Note that (¬P ∨ Q) → (P → Q) and
(P → Q) → ¬¬(¬P ∨Q). By Remark 1.5.2 it follows that (¬P ∨Q) ↔ (P → Q), and using Lemma 1.5.6,
we can conclude that P → Q is closed. □

1.6 Types as spaces

Definition 1.6.1 Let X be a type. A subtype of X is a function U : X → Prop to the type of
propositions. We write U ⊆ X to indicate that U is as above. If X is a set, a subtype may be called
subset for emphasis. For subtypes A,B ⊆ X, we write A ⊆ B as a shorthand for pointwise implication.
We will freely switch between subtypes U : X → Prop and the corresponding embeddings∑

x:X U(x) X .

In particular, if we write x : U for a subtype U : X → Prop, we mean that x :
∑

x:X U(x) – but we might
silently project x to X. We will also denote x ∈ U or U(x) if we know that x : X.

The subobject Open of the type of propositions induces a topology on every type. This is the viewpoint
taken in synthetic topology. We will follow the terminology of [Esc04; Leš21].

Definition 1.6.2 Let T be a type, and let A ⊆ T be a subtype. We call A ⊆ T open or closed iff A(t)
is open or closed respectively for all t : T .

Remark 1.6.3 It follows immediately that the pre-image of an open by any map of types sends is open,
so that any map is continuous. In Theorem 3.3.1, we shall see that the resulting topology is as expected
for second countable Stone spaces. In Remark 5.3.6, we shall see that the same for the unit interval.

2 Overtly discrete spaces

( Change the ι notation to have the domain on top, and π have codomain at bottom So πm
n ◦ πm =

πn, ι
n
m ◦ ιn = ιm ιnm : Bn → Bm. ) (Discussion on what the colimit is exactly, refer to definition

in[SDR20])

Definition 2.0.1 We call a type overtly discrete iff it is a sequential colimit of finite sets.

Remark 2.0.2 It follows from Corollary 7.7 of [SDR20] that overtly discrete types are sets. Note that the
type of overtly discrete types is independent on choice of universe, so we can write ODisc for this type. If
B : ODisc, we will denote Bn for the objects of the underlying sequence and ιn)m : Bn → Bm, ιn : Bn → B
for the obvious maps.
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2.1 Maps of overtly discrete types

Lemma 2.1.1 (Compactness of finite sets) Exponentiation by a finite sets commute with sequential
colimit.

Proof (Reference to standard proof working here as well.) □

Remark 2.1.2 In the above proof, we used that any element b ∈ B already occurs in some Bn. However,
it does not necessarily occur uniquely in Bn. In general, B is overtly discrete and there exist some Bn

with two elements corresponding to the same element in B, Theorem 7.4 from [SDR20] says that there
merely exists some m ≥ n such that these elements become equal in Bm.

Lemma 2.1.3 ( Any map between overtly discrete sets is a sequential colimit of maps between finite
sets. )

Let B,C be overtly discrete, and let f : B → C. There exists (N,≤)-indexed sequences of finite sets
(Bn)n:N, (Cn)n:N with colimits B,C respectively and compatible maps fn : Bn → Cn, such that f is the
induced morphism B → C.

Proof Let (Bn)n:N, (Cn)n:N be sequences of finite sets with colimits B and C. Using Axiom 4, we will
construct an increasing sequence of natural numbers ni with a family of maps fi : Bi → Cni such that
the following diagram commutes for all i > 0. :

Bi−1 Bi B

Cni−1
Cni

C

ιii−1

fi−1

ιi

fi f

κi
i−1 κi

(8)

Suppose we have an initial segment (ni)i<k of such a sequence with maps (fi)i<k making Equation (8)
commute for i < k. We shall show that in this case there exist nk : N, fk : Bk → Cnk

extending it.
Consider the map f ◦ ιk : Bk → C. As Bk is finite, Lemma 2.1.1 gives some n′

k : N such that it factors
over some Cn′

k
. Both f ′

k, fk−1 induce the same map Bk−1 → C. As Bk−1 is finite, from Remark 2.1.2
there is some nk ≥ n′

k such that they become equal in Cnk
, and we have fk : Bk → Cnk

such that the
following does commute; by Axiom 4 we then get compatible maps as required.

Bk−1 Bk B

Cnk−1
Cn′

k
Cnk

C

fk−1

fk

ιk

f (9)

□

Lemma 2.1.4 (Denote ℑ(f) instead of f(A).) (Can this be a shorter remark?) Let f : A∞ → B∞ be a
map between overtly discrete types, and suppose we have fn : An → Bn such that the following diagram
commutes:

An Am A∞

Bn Bm B∞

fn

ιmn

fm

ι∞m

f

κm
n κ∞

m

(10)

Then f(A) is the colimit of fn(An), and the maps A ↠ f(A) and f(A) ↪→ B are induced by the maps
An ↠ fn(An) and fn(An) ↪→ Bn respectively.

Proof For n ≤ m, we have that κm
n (fn(An)) = fm(ιmn (An)) ⊆ fm(Am), hence we can take the corestric-

tion of the map fn(An) → Bm to fm(Am) to get maps λm
n : fn(An) → fm(Am) making the following

diagram commute:

An Am A∞

fn(An) fm(Am) f(A∞)

Bn Bm B∞

ιmn

en

ι∞m

em e∞

λm
n

in

λ∞
m

im i∞

κm
n κ∞

m

(11)

Also it is clear that any b : f(A∞) already occurs in some fn(An), hence f(A∞) is colimiting. □
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Corollary 2.1.5 In Lemma 2.1.3, when f is injective or surjective, we can choose presentations such
that each fn is also injective or surjective respectively.

Proof Using Lemma 2.1.3 and Lemma 2.1.4, we get a factorization as in Equation (11). If f is injective,
then e is an isomorphism. Hence A is the colimit of fn(An), and we can take f ′

n = in. Similarly, if f is
surjective i is an isomorphism and we consider B as colimit of fn(An) and take f ′

n = en. □

2.2 Closure properties of ODisc

Remark 2.2.1 As sequential colimits commute with finite colimits, and finite sets are closed under finite
colimits, ODisc is closed under finite colimits as well.

Lemma 2.2.2 The colimit an (N,≤)-indexed sequence overtly discrete types is overtly discrete.

Proof By applying Axiom 4 to Lemma 2.1.3, given a colimit of the sequence Ai, we can find a quarter-
plane of the form

A0,0 A0,1 · · ·

A1,0 A1,1 · · ·

...
...

. . .

(12)

where all the Ai,j are finite sets, and Ai is the colimit in j of Ai,j and the maps Ai → Ak are induced by
maps Ai,j → Ak,j . The colimit of the above quarter-plane is also the colimit of the induced (N,≤)-indexed
sequence Aj,j , which is overtly discrete by definition. □

Corollary 2.2.3 Overtly discrete types are closed under Σ.

Proof Let B be overtly discrete and X : B → U be a B-indexed family of overtly discrete types. For
any i : N, we have a finite coproduct of overtly discrete types Σb:Bi

(X ◦ ιi(b)). As colimits commute with
finite coproducts, this is overtly discrete. By Theorem 5.1 of [SDR20], taking the colimit in i, we get
Σb:BX(b). By the above Lemma, this is overtly discrete. □

Remark 2.2.4 Note that the sequential colimit commutes with the propositional truncation, thus for
B : ODisc, we have ||B|| : ODisc.

2.3 Open and ODisc

Lemma 2.3.1 Whenever P is a proposition and overtly discrete, P is open.

Proof If P is overtly discrete, then P ↔ ∃n:NPn. As every Pn is finite, it is decidable. Hence P is a
countable disjunction of decidable propositions, hence open.

Lemma 2.3.2 Whenever P is a an open proposition, it is overtly discrete.

Proof Suppose P ↔ ∃n:Nαn = 1. Let Pn = ∃k≤n(αk = 1), which is a decidable proposition, hence a
finite set. Then the colimit of Pn is P . □

Corollary 2.3.3 A proposition is open iff it is overtly discrete.

Proof Immediate by the above two lemmas. □

Corollary 2.3.4 Open propositions are closed under dependent sums.

Proof Immediate from Corollary 2.2.3 and Corollary 2.3.3. □

Corollary 2.3.5 (transitivity of openness) Let T be a type, let V ⊆ T open and let W ⊆ V open.
Then the composite W ⊆ V ⊆ T is open as well.
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Proof Denote W ′ ⊆ T for the composite. Note that W ′(t) = Σv:V (t)W (t, v). As open propositions are
closed under dependent sums (Corollary 2.3.4), W ′(t) is an open proposition, as required. □

Remark 2.3.6 As the true proposition is open and openness is transitive, Open can be called a domi-
nance according to Proposition 2.25 of [Leš21]

Lemma 2.3.7 A type B is overtly discrete iff it is the quotient of a countable set by an open equivalence
relation.

Proof Is B : ODisc, then B = (Σn:NBn)/ ∼B where ∼B is the reflexive closure of (n, b) ∼ (m, ιmn b) for
n ≤ m. Conversely, assume B = D/R with D ⊆ N decidable and R open. By countable choice we get
α(·,·) : D → D → 2N such that R(x, y) ↔ ∃n:Nα(n) = 1. Define Dn = (D∩N≤n), and Rn : Dn → Dn → 2
so that Rn(x, y) is the equivalence relation induced by the relation that checks whether α(x,y)(k) = 1 for
some k ≤ n. Note that Bn = Dn/Rn is a finite set, and has colimit B. □

Lemma 2.3.8 For any open U ⊆ N, there merely exists a decidable set D in N such that Σn:ND(n) ≃
Σn:NU(n).

Proof Using countable choice, we get a map α(·) : N → N∞ such that U(n) ↔ Σk:Nαn(k) = 1. Hence
Σn:NU(n) ≃ Σn,k:N(αn(k) = 0) using N = N× N, we can conclude. □

2.4 Relating ODisc and Boole

Lemma 2.4.1 Every countably presented Boolean algebra can be seen as the colimit of a sequence of
finite Boolean algebras.

Proof Consider a countably presented Boolean algebra of the form B = 2[N]/(rn)n:N. For each n : N, let
Gn be the union of {gi|i ≤ n} and the finite set of terms occurring in (ri)i≤n. Denote Bn = 2[Gn]/(ri)i≤n.
Each Bn is a finite Boolean algebra, and there are canonical maps Bn → Bn+1. We claim that B is the
colimit of this sequence. □

Corollary 2.4.2 A Boolean algebra B is overtly discrete iff it is countably presented.

Proof Assume B : ODisc. By Lemma 2.3.7, B has open equality. Also F = 2[Σn:NBn] is countable
and we have a canonical Boolean morphism f : F → B. By countable choice, we get for each a, b : F a
sequence α(a,b) : 2

N such that (f(a) = f(b)) ↔ ∃k:N(α(a,b)k = 1). Consider r : F × F × N → F given by

r(a, b, k) =

{
a− b if α(a,b)(k) = 1

0 if α(a,b)(k) = 0

Then B = F/(r(a, b, n))(a,b,n):F×F×N. The converse direction was shown in Lemma 2.4.1. □

Remark 2.4.3 By Lemma 2.3.7, Corollary 2.2.3 and Corollary 2.4.2, it follows that any g : B → C
in Boole has an overtly discrete kernel. As a consequence, the kernel is countable and B/Ker(g) is in
Boole. By uniqueness of epi-mono factorizations and Axiom 2, the factorization B ↠ B/Ker(g) ↪→ C
corresponds to Sp(C) ↠ Sp(B/Ker(g)) ↪→ Sp(B).

3 Stone spaces

3.1 Stone spaces as profinite sets

Here we present Stone spaces as limits of (N,≥)-indexed sequences of finite sets. This is the perspective
taken in Condensed Mathematics [Sch19; Ásg21; CS24]. Some of the results in this section are specific
versions of the axioms used in [BC]. A full generalization is part of future work.

Lemma 3.1.1 Any S : Stone can be described as the limit of some (N,≥)-indexed sequence of finite
sets.

Proof By Remark 1.3.1, Lemma 2.4.1 and Lemma 2.2.2, for B : Boole, we have Sp(B) the limit of
Sp(Bn), which are finite sets. □
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Lemma 3.1.2 The limit of some (N,≥)-indexed sequence Sn of finite sets is a Stone space.

Proof For finite sets, we have that Sp(2Sn) = Sn, hence each Sn is Stone. By Remark 1.3.1, Lemma 2.4.1
and Lemma 2.2.2, Stone is closed under sequential limits. □

Remark 3.1.3 Whenever S : Stone, we shall denote Sn for the underlying sequence and whenever
n ≤ m, we denote πn

m for the maps Sm → Sn, and πn : S → Sn.

Remark 3.1.4 Dually to Remark 2.2.1 and Lemma 2.2.2, Stone spaces are closed under finite limits and
sequential limits. By Corollary 2.1.5 and Axiom 2 when we have a map of Stone spaces f : S → T , we
have (N,≥)-indexed sequences Sn, Tn with limits S and T respectively and maps fn : Sn → Tn inducing
f , and if f is surjective or injective, we can choose all fn to be surjective or injective respectively as well.

Lemma 3.1.5 For S : Stone, k : N we have that Fin(k)S is the colimit of Fin(k)Sn .

Proof By Remark 1.3.1 we have Fin(k)S = (2S)2
Fin(k)

. Note that 2F in(k) is finite, thus by Lemma 2.1.1,

the latter is the colimit of (2Sn)2
F in(k). By applying Remark 1.3.1 again, these types are Fin(k)Sn as

required. □

Lemma 3.1.6 For S : Stone and f : S → N, there merely exists some N : N with f(S) ⊆ N≤N .

Proof For each n : N, the fiber of f over n is a decidable subset fn : S → 2. We must have that
Sp(2S/(fn)n:N) = ⊥, hence there exists some N : N with

∨
n≤N fn =2S 1. It follows that f(s) ≤ N for

all s : S as required. □

Corollary 3.1.7 For S : Stone, we have that NS is the colimit of NSn .

Proof By Lemma 3.1.6 we have that any map S → N factors as S → Fin(k) ↪→ N for some k : N. By
Lemma 3.1.5, such a map is uniquely determined by compatible maps Sn → Fin(k), hence by compatible
maps Sn → N, as required. □

3.2 Closed and Stone

Corollary 3.2.1 Whenever S : Stone, ||S|| is closed.

Proof By Lemma 1.3.3, ¬S is equivalent to 0 =B 1, which is open by the above. Hence ¬¬S is a closed
proposition, and by Corollary 1.3.4, so is ||S||. □

Corollary 3.2.2 A proposition P is closed iff it is a Stone space.

Proof By the above, if S is both a Stone space and a proposition, it is closed. By Lemma 1.1.8, any
closed proposition is Stone. □

Lemma 3.2.3 Whenever S : Stone, and s, t : S, the proposition s = t is closed.

Proof Suppose S = Sp(B) and let G be the generators of B. Note that s = t iff s(g) =2 t(g) for all
g : G. As G is countable, and equality in 2 is decidable, s = t is a countable conjunction of decidable
propositions, hence closed. □

The following question was asked by Bas Spitters at TYPES 2024:

Corollary 3.2.4 For S : Stone and x, y, z : S

x ̸= y → (x ̸= z ∨ y ̸= z) (13)

Proof As x ̸= y, we can show that ¬(x = z ∧ y = z). This in turn implies ¬¬(x ̸= z ∨ y ̸= z). As, x ̸= z
and y ̸= z are both open propositions, by Lemma 1.5.4 so is their disjunction. By Remark 1.5.2, that
disjunction is double negation stable and Equation (13) follows. □

Remark 3.2.5 If Equation (13) holds in a type, we say that it’s inequality is an apartness relation. By
a similar proof as above, it can be shown that in our setting inequality is an apartness relation as soon
as equality is open or closed.
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3.3 The topology on Stone spaces

Theorem 3.3.1
Let A ⊆ S be a subset of a Stone space. TFAE:

(i) There exists a map α(·) : S → 2N such that A(x) ↔ ∀n:Nαx(n) = 0 for any x : S.

(ii) There exists some countable family Dn, n : N of decidable subsets of S with A =
⋂

n:N Dn.

(iii) There exists a Stone space T and some embedding T → S which image is A

(iv) There exists a Stone space T and some map T → S which image is A.

(v) A is closed.

Proof

(i) ↔ (ii). Dn and α(·) can be defined from each other by Dn(x) ↔ (αx(n) = 0). Then observe that

(
⋂
n:N

Dn)(x) ↔ ∀n:N(αx(n) = 0) (14)

(ii) → (iii). Let S = Sp(B). By Axiom 1, we have dn, n : N terms of B such that Dn = {x : S|x(dn) = 0}. Let
C = B/(dn)n:N. Then the map Sp(C) → S is as desired because

Sp(C) = {x : S|∀n:Nx(dn) = 0} =
⋂
n:N

Dn.

(iii) → (iv) Immediate.

(iv) → (i). Assume f : T → S corresponds to g : B → C in Boole. By Remark 2.4.3, f(T ) = Sp(B/Ker(g)),
and there is a surjection d· : N → Ker(g). For Dn corresponding to dn, we have Sp(B/Ker(g)) =⋂

n:N Dn.

(i) → (v). By definition.

(v) → (iv). As A is closed, it corresponds to a map a : S → Closed. We can cover the closed propositions with
Cantor space by sending α 7→ ∀n:Nα(n) = 0. By Axiom 3 gives us that there merely exists T, e, β·
as follows:

T 2N

S Closed

β·

e ∀n:N(·)n=0

a

(15)

Define B(x) ↔ ∀n:Nβx(n) = 0. As (i) → (iii) by the above, B is the image of some Stone space.
Furthermore, note that A is the image of B, thus A is the image of some Stone space. □

Remark 3.3.2 Using condition (iii), the previous result implies that closed subtype of Stone spaces are
Stone.

Corollary 3.3.3 For S : Stone and A ⊆ S closed, we have ∃x:SA(x) is closed.

Proof By Remark 3.3.2 we have that Σx:SA(x) is Stone, so its truncation is closed by Corollary 3.2.1.□

Corollary 3.3.4 Closed propositions are closed under dependent sums.

Proof Let P : Closed and Q : P → Closed. Then Σp:PQ(p) ↔ ∃p:PQ(p). As P is Stone by Corollary 3.2.2,
Corollary 3.3.3 gives that Σp:PQ(p) is closed. □

Remark 3.3.5 Analogously to Corollary 2.3.5 and Remark 2.3.6, it follows that closedness is transitive
and Closed forms a dominance.

Lemma 3.3.6 If S : Stone, and F,G : S → Closed be such that F ∩G = ∅. Then there exists a decidable
subset D : S → 2 such F ⊆ D,G ⊆ ¬D.
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Proof (Too shorten this (and some other proofs), I’ve removed some negations and pretended D : S → 2
is given by {x : S|x(d) = 0} instead of {x : S|x(d) = 1} ) Assume S = Sp(B). By Theorem 3.3.1, there
exists sequences fn, gn : B, n : N such that x ∈ F iff x(fn) = 0 for all n : N and y ∈ G iff y(gm) = 0 for all
m : N. Denote R ⊆ B for {fn|n : N} ∪ {gn|n : N}. Note that Sp(B/R) = F ∩G = ∅, so by Lemma 1.3.3
there exists finite sets I, J ⊆ N such that 1 =B ((

∨
i∈I fi) ∨ (

∨
j∈J gj)). Let y ∈ F , then y(fi) = 0 for all

i ∈ I, hence y(
∨

j∈J gj) = 1 And if x ∈ G, we have x(
∨

j∈J gj) = 0. Thus we can define the required D
by D(x) ↔ x(

∨
j∈J gj) = 0.

4 Compact Hausdorff spaces

Definition 4.0.1 A type X is called compact Hausdorff if there exists some S : Stone and some equiv-
alence relation ∼ : S × S → Closed such that X ≃ S/ ∼. We denote CHaus for the type of compact
Hausdorff types.

4.1 Topology on compact Hausdorff spaces

Lemma 4.1.1 Let X : CHaus be given as X = S/ ∼ with quotient map q : S ↠ X. Then A ⊆ X is
closed if and only if it is the image of a closed in S under q.

Proof As q is surjective, we have q(q−1(A)) = A. If A is closed, so is q−1(A) and hence A is the image
of a closed subtype of S. Conversely, let B ⊆ S be closed. Define A′ ⊆ S by

A′(s) := ∃s:S(B(t) ∧ s ∼ t).

As B,∼ are closed, by Lemma 1.5.3 and Corollary 3.3.3, we have that A′ is closed. Also A′ respects ∼,
hence induces a map A : X → Closed. Furthermore, A′(q(s)) iff q(s) ∈ q(B). Hence A = q(B). □

Remark 4.1.2 Let X : CHaus. From Theorem 3.3.1, it follows that A ⊆ X is closed iff it is the image of
a map T → X for some T : Stone. If A is closed, from Corollary 3.3.3, it follows that ∃x:XA(x) is closed
as well.

Corollary 4.1.3 For U ⊆ X an open subset of a compact Hausdorff space, we have ∀x:XU(x) open.

Proof As U is open, ¬U is closed. By Remark 4.1.2 ∃x:X¬U(x) is closed. Using Remark 1.5.2, it
follows that ¬(∃x:X¬U(x)) is open. Furthermore, it is equivalent to ∀x:X¬¬U(x), which is equivalent to
∀x:XU(x) by Remark 1.5.2. □

Lemma 4.1.4 Whenever X : CHaus and Cn : X → Closed closed subsets with
⋂

n:N Cn = ∅, there is
some N : N with

⋂
n≤N Cn = ∅.

Proof By Theorem 3.3.1, and Lemma 4.1.1 it is sufficient to prove the above when X is Stone and Cn

decidable. So assume X = Sp(B) and cn : B are such that Cn = {x : B → 2|x(cn) = 1}. Then the set of
maps B → 2 sending all cn to 1 is given by

Sp(B/{¬cn|n : N}) ≃
⋂
n:N

Cn = ∅.

Hence 0 = 1 in B/(¬cn)n:N, and there is some N : N with
∨

n≤N (¬cn) = 1, which also means that

∅ = Sp(B/(¬cn)n≤N ) ≃
⋂

n≤N

Cn.

Corollary 4.1.5 Let X,Y : CHaus and f : Y → X. Suppose (Gn)n:N is a decreasing sequence of closed
subsets of Y . Then f(

⋂
n:N Gn) =

⋂
n:N(f(Gn)).

Proof It is always the case that f(
⋂

n:N Gn) ⊆
⋂

n:N(f(Gn)). For the converse direction, suppose that
x ∈ f(Gn) for all n : N. Define F : Y → Closed by F (y) := (f(y) = x). F defines a closed subset,
furthermore, F ∩ Gn ̸= ∅ for all n : N. Thus

⋂
n:N(F ∩ Gn) ̸= ∅ by Lemma 4.1.4. By Remark 4.1.2 and

Remark 1.5.2, there merely exists some y in
⋂

n:N(F ∩Gn). Thus x ∈ f(
⋂

n:N Gn) as required. □
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Corollary 4.1.6 Let A ⊆ X be a subtype of a compact Hausdorff space. Let p : S → X be any
presentation of X with S : Stone. Then:

• A is closed iff it can be written as
⋂

n:N p(Dn) for some sequence Dn ⊆ S decidable.

• A is open iff it can be written as
⋃

n:N ¬p(Dn) for some sequence Dn ⊆ S decidable.

Proof The characterization of closed sets follows from characterization (ii) in Theorem 3.3.1, Lemma 4.1.1
and Corollary 4.1.5. The characterization of open sets then follows from Remark 1.5.2 and Lemma 1.5.7.□

Corollary 4.1.7 Any X : CHaus is second countable (has a topological basis which is countable).

Proof By Corollary 4.1.6, a basis is given by decidable subsets of some S : Stone. By Stone duality, such
a basis forms a countably presented Boolean algebra, which is countable. □

Lemma 4.1.8 Let X : CHaus, and let A,B : X → Closed be disjoint. Then there exist U, V : X → Open
disjoint with A ⊆ U,B ⊆ V , and B ∩ U = A ∩ V = ∅.

Proof Let q : S → X be a projection map presenting X. As q−1(A), q−1(B) are closed, by Lemma 3.3.6,
there is some D : S → 2 such that q−1(A) ⊆ D, q−1(B) ⊆ ¬D. Note that q(D), q(¬D) are closed by
Lemma 4.1.1. Furthermore, as q−1(A)∩¬D = ∅, we have that A ⊆ ¬q(¬D). As A∩B = ∅, we have that
A ⊆ ¬q(¬D) ∩ ¬B := U . Similarly, B ⊆ ¬q(D) ∩ ¬A := V . By definition, U, V are as required. □

4.2 Compact Hausdorff spaces are stable under dependent sums

Lemma 4.2.1 A type X is Stone iff it is merely a closed in 2N.

Proof By Remark 1.1.3, any B : Boole is can be written as C/(rn)n:N. By Remark 2.4.3, the quotient
map induces an embedding Sp(B) ↪→ Sp(C) = 2N, which is closed by by Theorem 3.3.1. □

(Can we maybe combine the next two Lemmas?)

Lemma 4.2.2 Assume S : Stone and T : S → Stone. Then Σx:ST (x) is Compact Hausdorff.

Proof By Corollary 3.3.4 and Lemma 3.2.3, the identity types in Σx:ST (x) are closed. By Lemma 4.2.1 we
have for each x : S that ∃A:2N→ClosedT (x) = Σy:2NA(y). Using Axiom 3 we get S′ : Stone with a surjective
map: q : S′ → S and: C : S′ → (2N → Closed) such that for all x : S′ we have T (q(x)) = Σy:2NC(x, y).
This gives a surjective map:

Σc:(S′×2N)C(c) ↠ Σx:ST (x)

The source is Stone by Remark 3.1.4 and Remark 3.3.2 so we can conclude. □

Lemma 4.2.3 Assume X : CHaus and T : X → CHaus. Then Σx:XT (x) is Compact Hausdorff.

Proof By Corollary 3.3.4 we have that identity type in Σx:XT (x) are closed. We know that for any
x : X we have ∃Y :StoneS

′ ↠ C(x). Consider the quotient map q : S ↠ X with S : Stone. By Axiom 3
we get S′ : Stone with a surjective map: e : S′ → S such that for all x : S′ we have Y (x) : Stone and a
surjective map Y (x) → T (q(e(x))). This gives a surjective map:

Σx:S′Y (x) → Σx:XT (x)

By Lemma 4.2.2 we have a surjective map from a Stone space to the source so we can conclude. □

4.3 Stone spaces are stable under dependent sums

We will show that Stone spaces are precisely totally disconnected compact Hausdorff spaces. We will use
this to prove that a dependent sum of Stone spaces is Stone.

Lemma 4.3.1 Assume X compact Hausdorff, then 2X is countably presented.

Proof Consider some quotient map q : S ↠ X with S : Stone. This induces an injection of Boolean
algebras 2X ↪→ 2S . Note that a : S → 2 lies in 2X iff

∀s,t:S ((q(s) =X q(t)) → (a(s) =2 a(t))) .

As equality in X is closed and equality in 2 is decidable, Lemma 1.5.8 tells us that the implication is
open for every s, t : S. By Corollary 4.1.3, we conclude that 2X is an open subalgebra of 2S . Therefore,
it is in ODisc by Corollary 2.3.3 and Corollary 2.2.3 and in Boole by Corollary 2.4.2. □
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Definition 4.3.2 Let X : CHaus and x : X. We define the connected component of x (denoted Qx) as
the intersection of all decidable subsets of X containing x.

Lemma 4.3.3 For all X : CHaus with x : X, Qx is a countable intersection of decidables in X.

Proof By Lemma 4.3.1, we can enumerate the elements of 2X , say as (Dn)n:N. Define En for n : N as
Dn if x ∈ Dn and X otherwise. Then ∩n:NEn = Qx. □

Lemma 4.3.4 Let X : CHaus, x : X and suppose U ⊆ X is open with Qx ⊆ U . Then we have some
decidable E ⊆ X with E(x) and E ⊆ U .

Proof By Lemma 4.3.3, we have Qx =
⋂

n:N Dn with Dn ⊆ X decidable. If Qx ⊆ U , we have that

Qx ∩ ¬U =
⋂
n:N

(Dn ∩ ¬U) = ∅.

By Lemma 4.1.4 there is some N : N with

(
⋂

n≤N

Dn) ∩ ¬U =
⋂

n≤N

(Dn ∩ ¬U) = ∅.

Therefore
⋂

n≤N Dn ⊆ ¬¬U , which equals U by Remark 1.5.2. Note that decidable subsets are closed
under finite intersection. Finally as x ∈ Dn for all n : N, x ∈

⋂
n≤N Dn as well and we’re done. □

(We should define what connected means)

Lemma 4.3.5 Let X be Compact Hausdorff with x : X. Then Qx is connected.

Proof Assume given a separation Qx = A ∪ B with A,B disjoint and decidable in Qx. Assume x ∈ A.
By Lemma 4.3.3, Qx ⊆ X is closed. Using Remark 3.3.5, it follows that A,B ⊆ X are closed and disjoint.
By Lemma 4.1.8 there exist U, V disjoint open such that A ⊆ U and B ⊆ V . By Lemma 4.3.4 we have a
decidable D such that Qx ⊆ D ⊆ U ∪ V . Note that D ∩ U = D ∩ (¬V ) := E is clopen, hence decidable
by Corollary 1.5.5. Remark that x ∈ E, hence B ⊆ Qx ⊆ E but B ∩ E = ∅, hence B = ∅. □

Lemma 4.3.6 Let X : CHaus, then X is Stone iff ∀x:XQx = {x}.

Proof By Axiom 1, it is clear that for all x : S with S Stone we have that Qx = {x}. Conversely,
assume that X : CHaus, x : X and Qx = {x}. We claim that the evaluation map e : X → Sp(2X) is
both injective and surjective, hence an equivalence. Let x, y : X. If fx = fy for all f : 2X , then y ∈ Qx,
hence x = y by assumption. Thus e is injective. Let q : S ↠ X be a quotient map. This induces an
injection 2X ↪→ 2S , which by Axiom 2 induces a surjection Sp(2S) ↠ Sp(2X). Note that e ◦ q factors as
S ≃ Sp(2S) ↠ Sp(2X). It follows that e is surjective. □

Theorem 4.3.7
Assume S : Stone and T : S → Stone. Then Σx:ST (x) is Stone.

Proof By Lemma 4.2.2 we have that Σx:ST (x) is compact Hausdorff. By Lemma 4.3.6 it is enough to
show that for all x : S and y : T (x) we have that Q(x,y) is a singleton. Assume (x′, y′) ∈ Q(x,y), then for
any map f : S → 2 we have that:

f(x) = f ◦ π1(x, y) = f ◦ π1(x
′, y′) = f(x′)

so that x′ ∈ Qx and since S is Stone by Lemma 4.3.6 we have that x = x′. Therefore we have Q(x,y) ⊆
{x} × T (x). By Lemma 4.3.5, Q(x,y) is an inhabited connected subtype of a Stone space. Thus any map
Tx → 2 is constant on Q(x,y) and by Lemma 4.3.6 we conclude that it is a singleton. □

5 The Unit interval

5.1 The unit interval as Compact Hausdorff space

In this section we will introduce the unit interval I as compact Hausdorff space. The definition is based
on [BB85].
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Example 5.1.1 Let n : N, we denote Cn = 2[n] for the free Boolean algebra on n generators and no
relations. Note that Sp(Cn) = 2n corresponds to the space of finite binary sequences.

Now we introduce some notation:

Definition 5.1.2

Given an infinite binary sequence α : 2N and a natural number n : N we denote α|n : 2n for the restriction
of α to a finite sequence of length n.

We denote 0, 1 for the binary sequences which are constantly 0 and 1 respectively.

We denote 0, 1 for the sequences of length 1 hitting 0, 1 respectively.

If x is a finite sequence and y is any sequence, denote x · y for their concatenation.

Now we’ll give a definition for when two finite binary sequences of length n correspond to real numbers
whose distance is ≤ ( 12 )

n. Informally, we want for every finite sequence s that (s · 0 · 1) and (s · 1 · 0) are
equivalent.

Definition 5.1.3 Let n : N and let s, t : 2n. We say s, t are n-near, and write s ∼n t if there merely
exists some m : N and some u : 2m, such that(

(s = (u · 0 · 1)|n) ∨ (s = (u · 1 · 0)|n)
)
∧
(
(t = (u · 0 · 1)|n) ∨ (t = (u · 1 · 0)|n)

)
(16)

Remark 5.1.4

As we’re dealing with finite sequences, s ∼n t is decidable.

Given any s : 2n, using m = n, u = s above, we can show that s ∼n s. So n-nearness is reflexive.

Equation (16) is symmetric in s and t. Hence n-nearness is symmetric.

Note that 0 · 0 ∼2 0 · 1 ∼2 1 · 0 ∼2 1 · 1, but 0 · 0 ≁2 1 · 1. Thus n-nearness is not in general transitive.

Definition 5.1.5 Let α, β : 2N, we define a ∼I β as ∀n:N(α|n ∼n β|n).

Lemma 5.1.6 Whenever α, β, γ : 2N, are such that α ∼I β, β ∼I γ, at least two of α, β, γ are equal.

Proof We will show that β = γ ∨ α = γ ∨ α = β. By Lemma 3.2.3 and Lemma 1.5.6, this is a closed
proposition. By Remark 1.5.2, we can instead show the double negation. To this end, assume that none
of α, β, γ are equal. By Theorem 1.4.2, there exist indices i, j, k ∈ N with

β(i) ̸= γ(i), α(j) ̸= γ(j), α(k) ̸= β(k) (17)

Let n := max(i, j, k) + 2. As α ∼I β, we have α|n ∼n β|n. By assumption α|n ̸= β|n, so WLOG we may
assume that we have some m : N, u : 2m with

α|n = (u · 0 · 1)|n, β|n = (u · 1 · 0)|n. (18)

As α(k) ̸= β(k) and n ≥ k + 2, it follows in particular that m ≤ n− 2 and hence β(n− 1) = 0.
As also β ∼I γ, we have β|n ∼n γ|n. So there exists some m′ : N, u′ : 2m with(

(β|n = (u′ · 0 · 1)|n) ∨ (β|n = (u′ · 1 · 0)|n)
)
∧
(
(γ|n = (u′ · 0 · 1)|n) ∨ (γ|n = (u′ · 1 · 0)|n)

)
. (19)

Similarly as above, we have that m′ ≤ n− 2, and as β(n− 1) = 0, it follows that β|n = (u′ · 1 · 0)|n. Now
as β(i) ̸= γ(i) with i < n, we have that β|n ̸= γ|n, hence γ|n = (u′ · 0 · 1)|n. Now we have m,m′ ≤ n− 2
and u : 2m, u′ : 2m

′
such that

(u · 1 · 0)|n = β|n = (u′ · 1 · 0)|n (20)

Note that β(m′) = 1. But also β(l) = 0 for all l with m < l < n Therefore m′ ≤ m. By similar reasoning,
m ≤ m′. We conclude m = m′. As a consequence, u = u′, but then γ|n = α|n, contradicting that
α(j) ̸= γ(j) for j < n. Hence we arrive at a contradiction, as required. □

Corollary 5.1.7 ∼I is a closed equivalence relation on 2N.

Proof By Remark 5.1.4, ∼I is a countable conjunction of decidable propositions. Also by Remark 5.1.4,
∼n is reflexive and symmetric for all n : N, thus ∼I is reflexive and symmetric as well. Finally ∼I is
transitive as a consequence of Lemma 5.1.6. □

Definition 5.1.8 We define I : CHaus as I = 2N/ ∼I .
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5.2 Order on the interval

Definition 5.2.1 For n : N we define csn : 2n → Q by

csn(a) =

n−1∑
i=0

a(i)

2i+1
(21)

And for α : 2N, we define the sequence cs(α) : N → Q by

cs(α)n = csn(α|n) (22)

Remark 5.2.2 csn gives a bijection between 2n and it’s image { k
2n |0 ≤ k ≤ 2n − 1} ⊆ Q. This

observation has some corollaries:
• In particular, each csn is injective.

• Furthermore, whenever a ̸= b : 2n, we must have that

|csn(a)− csn(b)| ≥
1

2n
. (23)

• It is known that
⋃

n:N{
k
2n |0 ≤ k ≤ 2n − 1} lies dense in the interval of Cauchy reals [0, 1]. It follows

that cs induces a surjection from Cantor space to [0, 1]. We claim without proof it in fact induces
an equivalence between I and [0, 1].

Finally, let us repeat a well-known identity for all m < n on such sums, which we’ll make some use of

n−1∑
i=m

1

2i+1
=

1

2m
− 1

2n
(24)

Lemma 5.2.3 Let n : N and s, t : 2n. Assume there is some m ≤ n with csm(s|m) = csm(t|m) + 1
2m ,

and at the same time csn(s)− csn(t) ≤ 1
2n . Then there is some k < m and some u : 2k such that

(s = u · 1 · 0|n) ∧ (t = u · 0 · 1|n) (25)

Proof By assumption, we have that s|m ̸= t|m. Then there must be some smallest number k < m such
that s(k) ̸= t(k). As k is minimal, we have s|k = t|k =: u. It follows for all l ≤ n that

csl(s|l)− csl(t|l) =
l−1∑
i=k

s(i)− t(i)

2i+1
(26)

Note that as s(i), t(i) ∈ {0, 1}, we must have |s(i)− t(i)| ≤ 1. Hence for any k′ < l, we have∣∣∣∣∣
l−1∑
i=k′

s(i)− t(i)

2i+1

∣∣∣∣∣ ≤
l−1∑
i=k′

1

2i+1
=

1

2k′ −
1

2l
(27)

Note that using the two equations above for l = m and k′ = k + 1 we have:

csm(s|m)− csm(t|m) =
s(k)− t(k)

2k+1
+

m−1∑
i=k+1

s(i)− t(i)

2i+1
(28)

≤s(k)− t(k)

2k+1
+

(
1

2k+1
− 1

2m

)
(29)

As the left hand side should equal 1
2m , we must have that s(k) − t(k) ̸= −1. As s(k) ̸= t(k) it follows

that s(k) = 1, t(k) = 0. But now

csn(s)− csn(t) =
1

2k+1
+

n−1∑
i=k+1

s(i)− t(i)

2i+1
≥ 1

2k+1
−
(

1

2k+1
− 1

2n

)
=

1

2n
(30)

And as csn(s) − csn(t) ≤ 1
2n as well, we get that csn(s) − csn(t) = 1

2n . Note that this lower bound is
only reached if s(i)− t(i) = −1 for all k < i < n. Hence for those i, we have s(i) = 0, t(i) = 1. Thus

s = (u · 1 · 0)|n ∧ t = (u · 0 · 1)|n. (31)

□
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Corollary 5.2.4 Let n : N and let s, t : 2n. Then

s ∼n t ↔ |csn(s)− csn(t)| ≤
1

2n
. (32)

Proof

Assume s ∼n t. If s = t, we have csn(s)−csn(t) = 0, otherwise, we may without loss of generality assume
there is some m < n and some u : 2m such that

(s = u · 0 · 1|n) ∧ (t = u · 1 · 0|n). (33)

Then

csn(s) = csm(u) + 0 +

n−1∑
i=m+1

1

2i+1
(34)

csn(t) = csm(u) +
1

2m+1
+ 0 (35)

And hence

csn(t)− csn(s) =
1

2m+1
−

n−1∑
i=m+1

1

2i+1
=

1

2n
(36)

Thus in all cases, from s ∼n t, we can conclude that

|csn(s)− csn(t)| ≤
1

2n
(37)

Conversely, assume that |csn(s) − csn(t)| ≤ 1
2n . If s = t, it is clear that s ∼n t. If s ̸= t, there must be

some smallest number m < n such that s(m) ̸= t(m). As m is minimal, we have s|m = t|m =: u. WLOG,
we assume that s(m) = 1, t(m) = 0. Then csm(s|m+1) = csm+1(t|m+1) +

1
2m+1 and by Lemma 5.2.3 it

follows that
s = (u · 1 · 0)|n ∧ t = (u · 0 · 1)|n. (38)

and thus we can conclude s ∼n t as required. □

Inspired by Definitions 2.7 and 2.10 [BB85], we define inequality on I as follows:

Definition 5.2.5 Let α, β : 2N. We define α ≤I β and α <I β as follows:

α ≤I β := ∀n:N
(
cs(α)n ≤ cs(β)n +

1

2n

)
(39)

α <I β := ∃n:N
(
cs(α)n < cs(β)n − 1

2n

)
(40)

Lemma 5.2.6 ≤I respects ∼I.

Proof We will show that whenever α ≤I γ and α ∼I β, we have β ≤I γ. The other proof obligation goes
similarly.

As β ≤I γ is closed, by Remark 1.5.2 it is double negation stable. By Theorem 1.4.2, the negation is
that there is some N : N with cs(β)N > cs(γ)N + 1

2N
. As α ≤I γ, we have cs(γ)N + 1

2N
≥ cs(α)N . Thus

cs(β)N > cs(α)N and therefore cs(β)N = cs(α)N + 1
2N

using α ∼I β. It follows that

cs(α)N +
1

2N
> cs(γ)N +

1

2N
≥ cs(α)N

From Remark 5.2.2, we must have cs(γ)N + 1
2N

= cs(α)N , otherwise the distance between cs(γ)N and
cs(α)N would be smaller than 1

2N
. As cs(α)n ≤ cs(γ)n + 1

2n for all n ≥ N , Lemma 5.2.3 gives that
α ∼I γ. But also β ∼I γ. But now α, β, γ are all distinct yet related by ∼I, contradicting Lemma 5.1.6.□

Remark 5.2.7 By Theorem 1.4.2, we have that ¬(α ≤ β) ↔ (β <I α). It follows immediately that <I
also respects I. Therefore, ≤I, <I induce relations ≤, < on I. As the order in Q is decidable, ≤, < are
closed and open respectively.
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Lemma 5.2.8 For any x, y : I, we have x ≤ y ∨ y ≤ x.

Proof Note that x ≤ y ∨ y ≤ x is the disjunction of two closed propositions, hence by Lemma 1.5.6 and
Remark 1.5.2 we can show it’s double negation instead. By the above remark, the negation implies that
x > y and y < x. We will show this is a contradiction. Let α, β : 2N correspond to x, y and assume
n,m : N with cs(α)n < cs(β)n − 1

2n and cs(β)m < cs(α)m − 1
2m . WLOG assume n < m. In this case for

γ any of α, β, we have

0 ≤ cs(γ)m − cs(γ)n =

m−1∑
i=n

γ(i)

2i+1
≤ 1

2n
− 1

2m

While at the same time, we have

cs(β)m − cs(β)n ≤ cs(α)m − 1

2m
− cs(β)n (41)

= (cs(α)m − cs(α)n) + (cs(α)n − cs(β)n)−
1

2m
(42)

≤ (
1

2n
− 1

2m
)− 1

2n
− 1

2m
(43)

< 0 (44)

giving a contradiction as required. □

Remark 5.2.9 From Corollary 5.2.4 we have ((x ≤ y) ∧ (y ≤ x)) ↔ (x = y). So in order to define a
map (x ≤ y)∨ (y ≤ x) → P , we need to define a map f : x ≤ y → P and a map g : y ≤ x → P such that
f |x=y = g|x=y.

(These properties are nice but not necessary and paused WIP:) (It is no used for Bouwer’s fixed point
theorem)

Corollary 5.2.10 For x, y : I we have (x ≤ y ∧ x ̸= y) ↔ (x < y). Also (x ̸= y) ↔ (x < y + x > y).

Proof By (x < y) ↔ ¬(y ≤ x) It’s also immediate from the definitions that x < y implies x ̸= y. As
((x ≤ y) ∧ (y ≤ x)) ↔ (x = y), if x ≤ y ∧ x ̸= y, we have ¬(y ≤ x), hence x < y. □

Lemma 5.2.11 Whenever x, y : I satisfy x < y, there is some z : I with x < z ∧ z < y.

5.3 The topology of the interval

Definition 5.3.1 Let a, b : I. Following standard notation, we denote

[a, b] := Σx:I(a ≤ x ∧ x ≤ b), (45)

we call subsets of I of this form closed intervals. We also denote

(−∞, a) := Σx:I(x < a) (46)

(a,∞) := Σx:I(a < x) (47)

(−∞,∞) := I (48)

(a, b) := Σx:I(a < x ∧ x < b), (49)

We call subsets of I of these forms open intervals.

Remark 5.3.2 Note that closed intervals and open intervals are closed and open respectively.

Lemma 5.3.3 For p : 2N → I the quotient map and D ⊆ 2N decidable, we have p(D) a finite union of
closed intervals.

Proof We will show the above if there exists some n : N, u : 2n such that D(α) ↔ α|n = u. This is
sufficient, as any decidable subset of 2N can be written as finite union of such decidable subsets. We claim
that p(D) = [p(u · 0), p(u · 1)].
We will first show that p(D) ⊆ [p(u · 0), p(u · 1)]. Suppose D(α). Then Then α|n = u and hence

cs(u · 1)m ≥ cs(α)m ≥ cs(u · 0)m (50)

which implies that p(u · 1) ≥I p(α) ≥I p(u · 0), as required.
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To show that [p(u · 0), p(u · 1)] ⊆ p(D), Suppose (u · 0) ≤I α ≤I (u · 1). It is sufficient to show that

(α|n = u) ∨ (α ∼I u · 0) ∨ (α ∼I u · 1).

As this is a disjunction of closed propositions, by Lemma 1.5.6 it’s closed, and by Remark 1.5.2, we can
instead show the double negation. So suppose that none of the disjoints hold. As α|n ̸= u, there is some
minimal m with α(m) ̸= u(m). We assume that α(m) = 1, u(m) = 0, the other case goes similarly. Then
for all k : N, we have cs(α)k ≥ cs(u · 1)|k. As also (u · 1) ≥I α, we have

cs(u · 1)|k +
1

2k
≥ cs(α)k ≥ cs(u · 1)k,

From which it follows that |cs(u · 1)k − cs(α)k| ≤ 1
2k
. Hence (u · 1)|k ∼k α|k by Corollary 5.2.4. Hence

x ∼I (a · 1), contradicting our assumption as required. □

Lemma 5.3.4 The complement of a finite union of closed intervals is a finite union of open intervals.

Proof We’ll use induction on the amount of closed intervals. The empty union of closed intervals is
empty, and hence it’s complement is I, which is an open interval. Let (Ci)i<k be a finite set of closed
intervals with ¬(

⋃
i<k Ci) a finite union of open intervals

⋃
j<l Oi. Suppose Ck is closed. We need to show

that ¬(
⋃

i≤k Ci) is also a finite union of open intervals. First note that in general, (¬(A∨B)) ↔ (¬A∧¬B)
hence

¬(
⋃
i≤k

Ci) = ¬((
⋃
i<k

Ci) ∪ Ck) = (¬(
⋃
i<k

Ci)) ∩ (¬Ck)

And by the induction hypothesis and distributivity, this equals

(
⋃
j<l

Oi)) ∩ (¬Ck) =
⋃
j<l

(Oi ∩ (¬Ck))

So we need to show that the intersection of an open interval and the negation of a closed interval is a
finite union of open intervals. We assume or open intervals are of the form (a, b) for a, b : I. The other
cases are very similar. So let a, b, c, d : I and consider U = (a, b) ∩ (¬[c, d]). Then

U(x) = Σx:I(a < x ∧ x < b) ∧ (x < c ∨ d < x) (51)

= Σx:I(a < x ∧ x < b ∧ x < c) ∨ (d < x ∨ a < x ∧ x < b) (52)

= Σx:I(a < x ∧ x < b ∧ x < c) ∪ Σx:I(d < x ∨ a < x ∧ x < b) (53)

We will show that U ′ = Σx:I(a < x∧x < b∧x < c) is an open interval. By a similar argument, the other
part will be as well, meaning that U is the union of two open intervals. Consider that b ≤ c ∨ c ≤ b. If
b ≤ c, (x < b ∧ x < c) ↔ x < b and U ′ = (a, b) If c ≤ b, (x < b ∧ x < c) ↔ x < c and U ′ = (a, c) If
b = c, these open intervals agree, hence from Remark 5.2.9 we can conclude that U ′ is an open interval.
We conclude that U is the union of two open intervals as required. □

Lemma 5.3.5 Every open U ⊆ I can be written as countable union of open intervals.

Proof By Corollary 4.1.6 there is some sequence of decidable subsets Dn ⊆ 2N with U =
⋃

n:N ¬p(Dn).
By Lemma 5.3.3, each p(Dn) is a finite union of closed intervals, and by Lemma 5.3.4 it follows that each
¬p(Dn) is a finite union of open intervals. We conclude that U is a countable union of open intervals as
required. □

Remark 5.3.6 It follows that the topology of I is generated by open intervals, which corresponds to the
standard topology on I. Hence our notion of continuity corresponds with the ϵ, δ-definition of continuity
one would expect. Thus every function f : I → I in the system we presented is continuous in the ϵ, δ-sense.

6 Cohomology

In this section we compute H1(S,Z) = 0 for S Stone, and show that H1(X,Z) for X compact Hausdorff
can be computed using Čech cohomology. We then apply this to compute H1(I,Z) = 0. We work on
the first cohomology group with coefficient in Z as it is sufficient for the proof of Brouwer’s fixed-point
theorem, but the results could be extended to Hn(X,A) for A any family of countably presented abelian
groups indexed by X.
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6.1 Needed results

(Should probably be moved elsewhere)

Lemma 6.1.1 Given S : Stone and T : S → Stone such that
∏

x:S∥T (x)∥, there exists a sequence of
finite types (Sk)k:N such that:

limkSk = S

and for each k : N we have a family of finite types Tk(x) for x : Sk such that
∏

x:Sk
∥Tk(x)∥ with maps:

Tk+1(x) → Tk(pk(x))

such that:

limk

(∑
x:Sk

Tk(x)

)
=
∑
x:S

T (x)

Proof ( Hugo This follows from Remark 3.1.4 and Theorem 4.3.7 and considering the surjection
(Σx:ST (x)) → S, but we discussed whether it might be easier to refactor the proof where you use
the above or make a remark after Theorem 4.3.7) □

Lemma 6.1.2 Consider (Sk)k:N a sequence of finite types, then the canonical map:

colimk(ZSk) → ZlimkSk

is an equivalence

Proof TODO □

6.2 Čech cohomology

Definition 6.2.1 Given S : Type with T : S → Type and A : S → Ab, we define Č(S, T,A) as the chain
complex: ∏

x:S ATx
x

∏
x:S A

T 2
x

x
∏

x:S A
T 3
x

x
d0 d1

(54)

with the usual boundary maps:
d0(α)x(u, v) = αx(v)− αx(u)

d1(β)x(u, v, w) = βx(v, w)− βx(u,w) + βx(u,w)

Definition 6.2.2 Given S : Type with T : S → Type and A : S → Ab, we define its Čech cohomology
groups by:

Ȟ0(S, T,A) = ker(d0)

Ȟ1(S, T,A) = ker(d1)/im(d0)

This means that Ȟ1(S, T,A) = 0 if and only if Č(S, T,A) is exact. Now we give three very general
lemmas about Čech complexes.

Lemma 6.2.3 Given S : Type with T : S → Type and A : S → Ab with t :
∏

x:S Tx, then we have that
Č(S, T,A) is exact.

Proof Assume given a cocycle, i.e. β :
∏

x:S A
T 2
x

x such that for all x : S and u, v, w : Tx we have that:

βx(u, v) + βx(v, w) = βx(u,w)

Define:
α :
∏
x:S

ATx
x

αx(u) = βx(tx, u)

Then for all x : S and u, v : Tx we have that:

αx(v)− αx(u) = βx(tx, v)− βx(tx, u) = βx(u, tx) + βx(tx, v) = βx(u, v)

so that β is a coboundary. □
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Lemma 6.2.4 Given S : Type with T : S → Type and A : S → Ab, we have that Č(S, T, λx.ATx
x ) is

exact.

Proof Assume given a cocycle, i.e. β :
∏

x:S A
T 3
x

x such that for all x : S and u, v, w, t : Tx we have that:

βx(u, v, t) + βx(v, w, t) = βx(u,w, t)

Define:
α :
∏
x:S

A
T 2
x

x

αx(u, t) = βx(t, u, t)

Then for all x : S and u, v, t : Tx we have that:

αx(v, t)− αx(u, t) = βx(t, v, t)− βx(t, u, t) = βx(u, t, t) + βx(t, v, t) = βx(u, v, t)

so that β is a coboundary. □

Lemma 6.2.5 Given S : Type with T : S → Type and A : S → Ab, assume that Č(S, T,A) is exact.
Then given:

α :
∏
x:S

BAx

with
β :
∏
x:S

(α(x) = ∗)Tx

we can conclude that:
α = ∗

Proof We define:
g :
∏
x:S

A
T 2
x

x

gx(u, v) = βx(u)
−1 · βx(v)

It is a cocycle in the Čech complex, so that by exactness there is f :
∏

x:S ATx
x such that for all x : S and

u, v : Tx we have that:
gx(u, v) = fx(v) · fx(u)−1

Then we define:
β′ :

∏
x:S

(α(x) = ∗)Tx

β′
x(u) = βx(u) · fx(u)

so that for all x : S and u, v : T (x) we have that:

β′
x(v)

−1 · β′
x(u) = fx(v)

−1 · βx(v)
−1 · βx(u) · fx(u) = refl

so that:
β′
x(u) = β′

x(v)

and this means that β′ factors through S, giving a proof of α = ∗. □

6.3 Cohomology of Stone spaces

Lemma 6.3.1 Given S : Stone with T : S → Stone, if
∏

x:S∥Tx∥ then we have that Č(S, T,Z) is exact.

Proof We apply lemma 6.1.1 to get Sk and Tk finite. Then by lemma 6.1.2 we have that:

colimkČ(Sk, Tk,Z) = Č(S, T,Z)

and each of the Č(Sk, Tk,Z) is exact by lemma 6.2.3 so we can conclude since a sequential colimit of
exact sequence is exact. □

Lemma 6.3.2 Given S : Stone, we have that H1(S,Z) = 0.

21



Proof Assume given a map α : S → BZ. We use local choice to get T : S → Stone such that
∏

x:S∥Tx∥
and:

β :
∏
x:S

(α(x) = ∗)Tx

and then apply lemma 6.3.1 and lemma 6.2.5 to conclude. □

Corollary 6.3.3 For any S : Stone the canonical map:

B(ZS) → BZS

is an equivalence.

6.4 Čech cohomology of compact Hausdorff spaces

Definition 6.4.1 A Čech cover consists of X : CHaus and S : X → Stone such that
∏

x:X∥Sx∥ and∑
x:X Sx : Stone.

By definition any compact Hausdorff type has a Čech cover.

Lemma 6.4.2 Given a Čech cover (X,S), we have that:

H0(X,Z) = Ȟ0(X,S,Z)

Proof By definition an element in Ȟ0(X,S,Z) is a map:

f :
∏
x:X

ZSx

such that for all u, v : Sx we have f(u) = f(v), which is equivalent to a map:∏
x:X

Z∥Sx∥

since Z is set, and since the Sx are merely inhabited this is the same as ZX . □

Lemma 6.4.3 Given a Čech cover (X,S) we have an exact sequence:

H0(X,λx.ZSx) → H0(X,λx.ZSx/Z) → H1(X,Z) → 0

Proof We use the long exact cohomology sequence associated to:

0 → Z → ZSx → ZSx/Z → 0

so that we just need H1(X,λx.ZSx) = 0 to conclude. But by corollary 6.3.3 we have that:

H1(X,λx.ZSx) = H1

(∑
x:X

Sx,Z

)
which vanishes by lemma 6.3.2. □

Lemma 6.4.4 Given a Čech cover (X,S) we have an exact sequence:

Ȟ0(X,λx.ZSx) → Ȟ0(X,λx.ZSx/Z) → Ȟ1(X,Z) → 0

Proof By lemma 6.3.2 we have an exact sequence of complexes:

0 → Č(X,S,Z) → Č(X,S, λx.ZSx) → Č(X,S, λx.ZSx/Z)

But since Ȟ1(X,λx.ZSx) = 0 by lemma 6.2.4, we conclude using the associated long exact sequence. □

Theorem 6.4.5
Given a Čech cover (X,S), we have that:

H1(X,Z) = Ȟ1(X,S,Z)

Proof We apply lemma 6.4.2, lemma 6.4.3 and lemma 6.4.4. □

In particular this means that the Čech cohomology Ȟ1(X,S,Z) do not depend on S.
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6.5 Cohomology of the interval

Recall that we denote Cn = 2n with a binary relation ∼n on Cn such that for all x, y : 2N we have that:

(∀(n : N). x|n ∼n y|n) ↔ x =I y

Lemma 6.5.1 We have that (Cn,∼n) is equivalent to (Fin(2n), λx, y. |x− y| ≤ 1).

Proof By corollary 5.2.4. □

We write:
C∼2

n =
∑

x,y:Cn

x ∼n y

C∼3
n =

∑
x,y,z:Cn

x ∼n y ∧ y ∼n z ∧ x ∼n z

Lemma 6.5.2 For any n : N we have an exact sequence:

0 → Z → ZCn → ZC∼2
n → ZC∼3

n

with the obvious boundary maps.

Proof It is clear that the map Z → ZCn is injective as Cn is inhabited, so the sequence is exact at Z.
Assume a cocycle α : ZCn , meaning that for all u, v : Cn, if u ∼n v then α(u) = α(v). Then by

lemma 6.5.1 we see that α is constant, so the sequence is exact at ZCn .
Assume a cocycle β : ZC∼2

n , meaning that for all u, v, w : Cn such that u ∼n v, v ∼n w and u ∼n w
we have that:

β(u, v) + β(v, w) = β(u,w)

which is equivalent to asking β(u, u) = 0 and β(u, v) = −β(v, u).
Using lemma 6.5.1 we can define:

α(n) = β(0, 1) + · · ·+ β(n− 1, n)

Then for all (m,n) such that |m− n| ≤ 1 we have that:
• If m = n and then β(m,m) = 0 = α(m)− α(m).

• If m+ 1 = n then β(m,m+ 1) = α(m+ 1)− α(m).

• If m = n+ 1 then β(n+ 1, n) = −β(n, n+ 1) = −α(n+ 1) + α(n).

So β is indeed a coboundary and the sequence is exact at ZC∼2
n . □

Proposition 6.5.3 We have that:
H0(I,Z) = Z
H1(I,Z) = 0

Proof Consider the canonical surjective map p : 2N → I and the associated Čech cover of I by:

Tx =
∑
y:2N

x =I p(y)

Then for l = 2, 3 we have that:

limnC
∼l
n =

∑
x:I

T l
x

By lemma 6.5.2 and stability of exactness under sequential colimit, we know that:

0 → Z → colimn

(
ZCn

)
→ colimn

(
ZC∼2

n

)
→ colimn

(
ZC∼3

n

)
is exact, but by lemma 6.1.2 this sequence is equivalent to:

0 → Z →
∏
x:I

ZTx →
∏
x:I

ZT 2
x →

∏
x:I

ZT 3
x

So it being exact implies that:
Ȟ0(I, T,Z) = Z
Ȟ1(I, T,Z) = 0

We conclude by lemma 6.4.2 and theorem 6.4.5. □

Remark 6.5.4 We could carry a similar computation for S1, by approximating it with 2n with 0n ∼n 1n

added. We would find H1(S1,Z) = Z.
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6.6 Brouwer’s fixed-point theorem

Here we consider the modality defined by localising at I [RSS20], denoted by LI. We say X is I-local if
LI(X) = X and that it is I-contractible if LI(X) = 1.

Lemma 6.6.1 We have that BZ is I-local.

Proof By proposition 6.5.3, from H0(I,Z) = Z we get that the map Z → ZI is an equivalence, so Z is
I-local and therefore any identity type in BZ is I-local. So there is at most one factorisation of any map
I → BZ through 1. From H1(I,Z) = 0 we get that there merely exists such a factorisation. □

Lemma 6.6.2 Assume X a pointed type such that for all x : X we have f : I → X such that f(0) = ∗
and f(1) = x. Then X is I-contractible.

Proof For all x : X we get a map:

f : I → X → LI(X)

such that f(0) = [∗] and f(1) = [x]. Since LI(X) is I-local this means that:∏
x:X

[∗] = [x]

We conclude: ∏
x:LI(X)

[∗] = x

by applying the elimination principle for the modality. □

Corollary 6.6.3 We have that R and D2 :≡ {(x, y) : R|x2 + y2 ≤ 1} are I-contractible.

Proposition 6.6.4 We have that LI(R/Z) = BZ.

Proof As for any group quotient, the fibers of the map:

R → R/Z

are Z-torsor, se we have an induced pullback square:

R 1

R/Z BZ

Now we check that the bottom map is an I-localisation. Since BZ is I-local by lemma 6.6.1 it is enough
to check that its fibers are I-contractible. Since BZ is connected it is enough to check R is I-contractible,
but this is corollary 6.6.3. □

Remark 6.6.5 By lemma 6.6.1, for any X we have that H1(X,Z) = H1(LI(X),Z), so that by proposi-
tion 6.6.4 we have that H1(R/Z,Z) = H1(BZ,Z) = Z.

We omit the proof that S1 :≡ {(x, y) : R|x2 + y2 = 1} is equivalent to R/Z. The equivalence can be
constructed using trigonometric functions, which exists by [BB85][Prop 4.12].

Proposition 6.6.6 The map S1 → D2 has no retraction.

Proof Otherwise by corollary 6.6.3 and proposition 6.6.4 we would get a retraction of BZ → 1, so BZ
would be contractible. □

Theorem 6.6.7 (Intermediate value theorem)
For any f : I → I and y : I such that f(0) ≤ y and y ≤ f(1), there exists x : I such that f(x) = y.
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Proof By Remark 4.1.2, the proposition ∃x : I.f(x) = y is closed and therefore ¬¬-stable, so we can
proceed with a proof by contradiction. If there is no such x : I, we have f(x) ̸= y for all x : I. Then, by
Corollary 5.2.10 the following two sets cover I:

U0 :≡ {x : I | f(x) < y} U1 :≡ {x : I | y < f(x)}

Since U0 and U1 are disjoint, we have I = U0 + U1 which allows us to define a non-constant function
I → 2, which contradicts Proposition 6.5.3. □

Theorem 6.6.8 (Brouwer’s fixed-point theorem)
For all f : D2 → D2 there exists x : D2 such that f(x) = x.

Proof As above, by Remark 4.1.2, we can proceed with a proof by contradiction, so we assume f(x) ̸= x
for all x : D2. For any x : D2 we set dx :≡ x − f(x), so we have that one of the coordinates of dx is
invertible. Let Hx(t) :≡ f(x) + t · dx be the line through x and f(x), where “+” and “·” are defined
by extending the usual definitions on I. By Theorem 6.6.7 and invertibility of one of the coordinates of
dx, there are intersections of Hx and ∂D2 = S1, both for t ≤ 0 and for t > 0. Since these correspond
to distinct solutions of a monic quadratic equation, we know there are exactly two. We denote the
intersection for t > 0 with r(x), which has the property that it preserves S1. Then r is a retraction from
D2 onto its boundary S1, which is a contradiction by Proposition 6.6.6. □
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Paris, 2021. url: https://dagur.sites.ku.dk/condensed-foundations/ (cit. on p. 9).

[BB85] Errett Bishop and Douglas Bridges. Constructive analysis. Vol. 279. Grundlehren der mathe-
matischenWissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 1985, pp. xii+477. isbn: 3-540-15066-8. doi: 10.1007/978-3-642-61667-9. url:
https://doi.org/10.1007/978-3-642-61667-9 (cit. on pp. 2, 14, 17, 24).

[BC] Reid Barton and Johan Commelin. lean-ctt-snapshot. url: https://github.com/jcommelin/
lean-ctt-snapshot (cit. on pp. 2, 9).

[CCH23] Felix Cherubini, Thierry Coquand, and Matthias Hutzler. A Foundation for Synthetic Alge-
braic Geometry. 2023. arXiv: 2307.00073 [math.AG]. url: https://www.felix-cherubini.
de/iag.pdf (cit. on pp. 2, 4).

[CRS21] Thierry Coquand, Fabian Ruch, and Christian Sattler. “Constructive sheaf models of type the-
ory”. In:Math. Struct. Comput. Sci. 31.9 (2021), pp. 979–1002. doi: 10.1017/S0960129521000359.
url: https://doi.org/10.1017/S0960129521000359 (cit. on p. 2).

[CS24] Dustin Clausen and Peter Scholze. Analytic Stacks. Lecture series. 2023-2024. url: https:
//www.youtube.com/playlist?list=PLx5f8IelFRgGmu6gmL-Kf_Rl_6Mm7juZO (cit. on pp. 2,
9).

[Die18] Hannes Diener. Constructive reverse mathematics : Habilitationsschrift. Fakultät IV - Naturwissenschaftlich-
Technische Fakultät, 2018. url: https://dspace.ub.uni-siegen.de/handle/ubsi/1306
(cit. on pp. 2, 4, 6).

[Dyc76] Roy Dyckhoff. Categorical methods in dimension theory. English. Categor. Topol., Proc. Conf.
Mannheim 1975, Lect. Notes Math. 540, 220-242 (1976). 1976 (cit. on p. 2).
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