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The following is an incomplete draft on work in progress (so far) by ?
We denote localisation at I by S.
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1 Acyclicity and Čech cohomology

1.1 First cohomology vanish for Stone spaces

First some result on Čech sequences and cohomology. It works in plain HoTT and is certainly not new.

Lemma 1.1.1 Assume given sets S, S′ with a surjection:

S′ → S

and write T (x) its fiber over X : S.
Assume given A : S → Ab with:

ϕ :
∏
x:S

BA(x)

and:

α :
∏
x:S

(ϕ(x) = ∗)T (x)

If the beginning of the Čech sequence:∏
x:S

A(x)T (x) →
∏
x:S

A(x)T (x)2 →
∏
x:S

A(x)T (x)3

is exact then ϕ = ∗.
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Proof See definition 1.3.3 for the definition of the maps in the sequence.
We define:

g :
∏
x:S

T (x)2 → A(x)

by having gx(y, z) the the element αx(y)
−1 · αx(z). It is easy to check that it is a cocycle in the given

sequence, so that by exactness there is f :
∏

x:S T (x) → A(x) such that for all x : S and y, z : T (x) we
have that:

gx(y, z) = fx(y) · fx(z)−1

Then we define:
α′ :

∏
x:S

(ϕ(x) = ∗)T (x)

α′
x(y) = αx(y) · fx(y)

so that for all x : S and y, z : T (x) we have that:

α′
x(z)

−1 · α′
x(y) = fx(z)

−1αx(z)
−1αx(y) · fx(y) = refl

so that:
α′
x(y) = α′

x(z)

and this means that α′ factors through S, giving a proof of ϕ = ∗. □

We prove the Čech sequence of a map to a finite type is exact:

Lemma 1.1.2 Assume F finite type with a type X and a surjective map q : X → F . We write I(x) the
fibers of q over x : F .

Assume given A : F → Ab, then the Čech sequence:∏
x:F

A(x)I(x) →
∏
x:F

A(x)I(x)
2

→
∏
x:F

A(x)I(x)
3

is exact.

Proof Since F is finite and exactness is stable under finite products, we can assume F = 1, then A is
just an abelian group and I an inhabited type, say with 0 : I. Then we are considering the sequence:

AI → AI2

→ AI3

with the maps:
(ai)i:I 7→ (ai − aj)i,j:I

(ai,j)i,j:I 7→ (ai,j + aj,k − ai,k)i,j,k:I

Assume (ai,j)i,j:I such that for all i, j, k : I we have that ai,j + aj,k = ai,k.
First we have that ai,i+ai,i = ai,i so that ai,i = 0. Then ai,j +aj,i = ai,i gives that ai,j = −aj,i. Now

we consider (ai,0)i:I , which is sends to (ai,0 − aj,0)i,j:I = (ai,j)i,j:I . So the sequence is indeed exact. □

We want to prove that the vanishing of the Čech sequence of Stone spaces with overtly discrete
coefficients is stable under sequential limit. It will rely heavily on Scott continuity. We need an auxiliary
definition:

Definition 1.1.3 Assume given S = limk Sk sequential limits of Stone and A : S → AbODisc. Then we
define:

Ak : Sk → AbODisc

Ak(x) =
∏

y:S,y|k=x

A(y)

By the dual to Tychonov, we have that Ak(x) is overtly discrete.
Moreover we for all k : N and x : Sk+1 we have a map:

Ak(x|k) → Ak+1(x)

The two references in the proof are to variants of Scott continuity, in the directed univalence draft.
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Lemma 1.1.4 Assume given S = limk Sk and S′ = limk S
′
k limits of Stone spaces, and a surjective map

of towers:

S′
0 S′

1 S′
2 · · ·

S0 S1 S2 · · ·

We denote the fibers of the induced map S′ → S over x : S by T (x) and the fibers of the map S′
k → Sk

over x : Sk by Tk(x).
Assume given A : S → AbODisc such that for all k : N the Čech sequence:∏

x:Sk

Ak(x)
Tk(x) →

∏
x:Sk

Ak(x)
Tk(x)

2

→
∏
x:Sk

Ak(x)
Tk(x)

3

is exact. Then the Čech sequence:∏
x:S

A(x)T (x) →
∏
x:S

A(x)T (x)2 →
∏
x:S

A(x)T (x)3

is exact.

Proof We prove that for any l : N we have that:

colimk

(∏
x:Sk

Ak(x)
Tk(x)

l

)
=
∏
x:S

A(x)T (x)l

We conclude from this and exactness being stable under sequential colimit. We omit the verification that
this is compatible with maps.

We have that: ∏
x:Sk

Ak(x)
Tk(x)

l

=
∏
x:Sk

∏
y:S,y|k=x

A(y)Tk(x)
l

=
∏
y:S

A(y)Tk(y|k)l

and by ?? we have that:

colimk

∏
y:S

A(y)Tk(y|k)l

 =
∏
y:S

colimk

(
A(y)Tk(y|k)l

)
but by ?? we have that:

colimk

(
A(y)Tk(y|k)l

)
= A(y)limk Tk(y|k)l

and we can see by commutation of limits that:

lim
k

Tk(y|k)l = T (y)l □

Now we just have to assemble the pieces.

Lemma 1.1.5 Let S be Stone and A : S → AbODisc. Then:

H1(S,A) = 0

Proof Assume given:

ϕ :
∏
s:S

BA(x)

we have that: ∏
x:S

∥ϕ(x) = ∗∥

so that by local choice there merely exists S′ Stone and a surjective map:

q : S′ → S
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with fibers denoted T (x) and:

α :
∏
x:S′

(ϕ(x) = ∗)T (x)

In order to conclude by applying lemma 1.1.1, it is enough to prove that the Čech sequence:∏
x:S

A(x)T (x) →
∏
x:S

A(x)T (x)2 →
∏
x:S

A(x)T (x)3

is exact.
By ?? we know that any surjective map between Stone spaces is a sequential limit of surjective maps

between finite types. So by applying lemma 1.1.4 we see it is enough to prove the exactness of the exact
sequence for maps between finite types, and this is lemma 1.1.2. □

1.2 Stone spaces are acyclic

We extend the previous section to the following: for all S Stone,A : S → AbODisc and n > 0 we have that:

Hn(S,A) = 0

We (Thierry & Hugo) follow David’s proof in SAG to go from 1 to all n.

Lemma 1.2.1 Assume for all S Stone and A : AbODisc we have that:

Hk(S,A) = 0

for all 0 < k < n. Then:
• For all S Stone and A overtly discrete abelian group, for all k < n the map:

K(AS , k) → K(A, k)S

is an equivalence.

• For all S Stone and A overtly discrete abelian group, the map:

K(AS , n) → K(A,n)S

is an embedding.

Proof We proceed by induction on n. If n = 0 this is clear as we always have that K(AS , 0) = K(A, 0)S .
Assume it holds for n, then:
• We need to prove that the embedding:

K(AS , n) → K(A,n)S

is an equivalence. If n = 0 it is immediate and otherwise by Hn(S,A) = 0 we know that K(A,n)S

is connected, so the embedding is surjective and therefore an equivalence.

• We need to prove that the map:

K(AS , n+ 1) → K(A,n+ 1)S

is an embedding, since the source is connected it is enough to prove that:

ΩK(AS , n+ 1) → Ω(K(A,n+ 1)S)

is an equivalence but this is the previous bullet-point. □

Theorem 1.2.2
Let S be Stone and A : S → AbODisc. Then for all n > 0 we have that:

Hn(S,A) = 0
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Proof We proceed by induction on k. For k = 1 it is lemma 1.1.5.
Assume it hold for all 0 < k < n we want to prove it for n. Assume:

α :
∏
x:S

K(Ax, k + 1)

By local choice we have a surjective map:

f :
∑
x:S

Tx → S

with Tx Stone such that we merely have: ∏
x:S

Tx → (α(x) = ∗)

This means that the image of α under the diagonal map:∏
x:S

K(Ax, k + 1) →
∏
x:S

K(Ax, k + 1)Tx

merely is zero.
By lemma 1.2.1 it means that the image of α by the map:∏

x:S

K(Ax, n) →
∏
x:S

K(ATx
x , n)

merely is 0, which means that the map:

Hn(x : S,Ax) → Hn(x : S,ATx
x )

sends α to 0.
Then we consider the exact sequence depending on x : S:

0 → Ax → ATx
x → Lx → 0

so we have an exact sequence:

Hn−1(x : S,Lx) → Hn(x : S,Ax) → Hn(x : S,ATx
x )

where α is send to 0 in Hn(x : S,ATx
x ). By induction we have Hn−1(x : S,Lx) from which we conclude

that α is equal to 0 in Hn(x : S,Ax). □

Corollary 1.2.3 For all S Stone, A : AbODisc and n we have that the map:

K(AS , n) → K(A,n)S

is an equivalence.

Proof From lemma 1.2.1 and theorem 1.2.2. □

1.3 Čech cohomology

Definition 1.3.1 A Čech cover for a type X consists of a surjective map:

f : S → X

where S is Stone and for all x : X the fiber Sx of f over x is Stone.

Next lemma show that cohomology interact well with Čech cover. It will be used later to prove that
cohomology and Čech cohomology agree.
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Lemma 1.3.2 Assume given X a type with a Čech cover:

f : S → X

as well as A : X → AbODisc.
For all n ≥ 1 we have an exact sequence:

Hn−1(X,x 7→ ASx
x ) → Hn−1(X,L) → Hn(X,A) → 0

natural in A, where Lx = ASx
x /Ax.

Proof Using the long exact sequence associated to:

0 → Ax → ASx
x → Lx → 0

by theorem 1.2.2 it is enough to prove that for all n we have:

Hn(x : X,ASx
x ) = Hn(x : S,Ax)

But by corollary 1.2.3 we have that: ∏
x:X

K(ASx
x , n) =

∏
x:S

K(Ax, n)
□

Definition 1.3.3 Assume given a Čech cover

f : S → X

and A : X → AbODisc.
Then we define the Čech complex by:∏

x:X

ASx
x →

∏
x:X

ASx×Sx
x → · · ·

with the boundary maps defined as expected, that is:

δ(α)(x, u0, · · · , un) =

n∑
i=0

(−1)iα(x, u0, · · · , ûi, · · · , un)

Then the Čech cohomology:

Ȟk(x : X,Ax)

is defined as the k-th homology group of the Čech complex.

Lemma 1.3.4 Assume given a Čech cover:

f : S → X

If we are given a short exact sequence of overtly discrete abelian group:

0 → Ax → Bx → Cx → 0

depending on x : X, there is a long exact sequence of Čech cohomology groups:

Ȟ0(X,A) → Ȟ0(X,B) → Ȟ0(X,C) → Ȟ1(X,A) → Ȟ1(X,B) → Ȟ1(X,C) → · · ·

Moreover this long exact sequence is natural in the short exact sequence.

Proof We just use the fact that all elements
∑

x:X T k+1
x in the Čech complex are Stone spaces, so

a short exact sequence of overtly discrete abelian group induces a short exact of Čech complexes by
theorem 1.2.2. □
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Lemma 1.3.5 Assume given a Čech cover:

f : S → X

and A : X → AbODisc.
For all n ≥ 1 we have an exact sequence:

Ȟn−1(X,x 7→ ASx
x ) → Ȟn−1(X,L) → Ȟn(X,A) → 0

natural in A where Lx = ASx
x /Ax.

Proof It is enough to prove Ȟn(X,x 7→ ASx
x ) = 0 for all n ≥ 1. Indeed assume given:

α :
∏
x:X

Sn+1
x → Sx → Ax

such that δ(α) = 0, i.e. for all x : X and u0, · · · , un+1, v : Sx we have that:

n+1∑
i=0

(−1)iα(x, u0, · · · , ûi, · · · , un+1, v) = 0

Then we define:
β :
∏
x:X

Sn
x → Sx → Ax

β(x, u0, · · · , un−1, v) = (−1)nα(x, u0, · · · , un−1, v, v)

and then:

δ(β)(x, u0, · · · , un, v) = (−1)n
n∑

i=0

(−1)iα(x, u0, · · · , ûi, · · · , un, v, v)

= α(x, u0, · · · , un, v) □

Theorem 1.3.6
Assume given a Čech cover:

f : S → X

and A : X → AbODisc.
Then we have a natural isomorphism:

Hn(X,A) = Ȟn(X,A)

Proof We proceed by induction on n. For n = 0 we need to prove that maps:

α :
∏
s:S

Af(s)

such that whenever f(s) = f(t) we have that α(s) = α(t) are naturally isomorphic to:∏
x:X

Ax

This is immediate.
For the inductive step we use lemma 1.3.2 and lemma 1.3.5. Naturality comes from the naturality of

the exact sequences. □

1.4 The unit interval is acyclic

Proposition 1.4.1 For all A overtly discrete and all k we have that:

Hk(I, A) = 0

Proof TODO □
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2 Shape modality

Here we start studying the shape modality S, which is defined as the localisation at I.

2.1 Deloopings of overtly discrete abelian groups are local

Lemma 2.1.1 For all A overtly discrete abelian group and any n : N, we have that:

BnA

is S-local.

Proof We proceed by induction on n.
• For n = 0 we have A = AI, which holds as maps in I → A factor through a finite type and maps in
I → 2 are constant.

• For n + 1, by induction hypothesis we know that Bn+1A is S-separated, and we merely have a lift
by proposition 1.4.1. □

Corollary 2.1.2 Let X be a type and A be an overtly discrete abelian group. Then for all k we have:

Hk(X,A) ≃ Hk(SX,A)

2.2 The shape of the circle is the circle

Proposition 2.2.1 We have that:
S(R/Z) = BZ

Proof The fibers of the map:
R → R/Z

are Z-torsors, as is the case for any group quotient. This means that we have a fiber sequence:

R → R/Z → BZ

We check that the second map is S-localisation. We have that BZ is S-local by lemma 2.1.1. Since BZ is
connected we just need to prove that R is S-contractible to conclude. But 0 : R and for any x : R there
is f : I → R such that f(0) = 0 and f(1) = x so we can conclude. □

2.3 Finite homotopical cell complex are local

Lemma 2.3.1 Let X be a finite homotopical cell complex, then for any x : X and any n we have that
πn(X,x) is a countably presented abelian group.

Proof TODO maybe find a reference? □

Proposition 2.3.2 Let X be a finite homotopical cell complex, then X is S-local.

Proof We decompose X as its Postnikov tower:

· · · → ∥X∥n+1 → ∥X∥n → · · · → ∥X∥0

First we show by induction on n then ∥X∥n is S-local:
• We have that ∥X∥0 is a finite set so it is S-local.

• Assuming ∥X∥n is S-local, it is enough to prove that the fibers of the map:

∥X∥n+1 → ∥X∥n

are S-local. But they merely are of the form Bnπn(X,x) for some x : X, but πn(X,x) is overtly
discrete by lemma 2.3.1 so that Bnπn(X,x) is S-local by lemma 2.1.1.

Therefore the limit of the Postnikov tower is S-local as a limit of S-local group, and we can conclude as a
finite homotopical CW complex X is the limit of its Postnikov tower (why TODO, maybe optimistic?).□

Remark 2.3.3 By Anel / Barton ”Choice axioms and Postnikov completeness” we know that Postnikov
completion and hypercompletion agree in our setting because we have countable choice. Do we have
hypercompleteness?
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2.4 Cellular cohomology for finite topological cell complex

Definition 2.4.1 An n-dimensional topological cell complex is defined inductively as a type X such
that:

• If n = 0 then X is a finite type.

• For n + 1, we ask that there merely exists Xn an n-dimensional topological cell complex and a
pushout square:

Xn X

Sn × Fin(k) Dn × Fin(k)

A finite topological cell complex is a type that is an n-dimensional topological cell complex for some n.

By contrast we call the usual HoTT cell complexes homotopical.

Lemma 2.4.2 For all n we have that:

SDn = 1

S Sn = Sn

Proof For any x : Dn we have a map f : I → Dn such that f(0) = 0 and f(1) = x se we have that
SDn = 1.

For Sn we proceed inductively:

S−1 = S−1 = 0

which is S-local.
Otherwise assume S Sn = Sn. We have a pushout diagram:

Dn Sn+1

Sn Dn

which is S-equivalent to the pushout square:

1 Sn+1

Sn 1

so that we have:

SSn+1 = SSn+1

but Sn+1 is S-local by proposition 2.3.2. □

Lemma 2.4.3 Let X be a type such that SX is a finite homotopical n-dimensional cell complex. Assume
given a pushout square:

X Y

Sn × Fin(k) Dn × Fin(k)

Then we have a pushout square:
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SX SY

Sn × Fin(k) Fin(k)

Proof By general reasoning on modalities and lemma 2.4.2 we have that:

SY = S

SX
∐

Sn×Fin(k)

Fin(k)


but since:

SX
∐

Sn×Fin(k)

Fin(k)

is a finite homotopical cell complex by hypothesis, is is S-local by proposition 2.3.2 and we can conclude.□

Lemma 2.4.4 Let X be a finite topological cell complex, then SX is a finite homotopical cell complex.
Moreover we can compute a presentation for SX from a presentation for X simply by localising.

Proof We apply lemma 2.4.3 repeatedly. □

Remark 2.4.5 Given a finite topological cell complex, defining the corresponding finite homotopical cell
complex is not obvious, as we need to show the result is independent from the chosen presentation. Using
S allows to bypass this issue.

Corollary 2.4.6 Assume given X a finite topological cell complex and A an overtly discrete abelian
group. Then:

Hn(X,A)

can be computed using the cellular cohomology of the finite homotopical complex SX.

Proof Just recall that by corollary 2.1.2 we have thatHn(X,A) = Hn(SX,A) and conclude by lemma 2.4.4.□

3 Random Facts

Compilation of various facts on synthetic stone duality which I (Hugo) don’t know where to put. I’m not
even sure where I should put this section.

3.1 Stone space are sequential limits of finite types

Lemma 3.1.1 Let X be a type. TFAE:
(i) X is Stone.

(ii) X is a sequential limit of finite types.

Proof The key remark is that:

Spec(colimkBk) = limk Spec(Bk)

• (i) implies (ii). We know that a countably presented algebra is a sequential colimit of finitely
presented algebras. But spectrum of a f.p. algebra is a finite type and we conclude using the key
remark.

• (ii) implies (i). By the key remark and the fact that c.p. algebras are stable by sequential colimits,
we conclude that Stone spaces are stable by sequential limit and the fact that finite types are Stone
spaces is enough to conclude. □
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3.2 Overtly discrete types are sequential colimits of finite types

Lemma 3.2.1 Any open in N is countable in the sense that it is merely equivalent to a decidable in N.

Proof Assume given a map U : N → Open. By countable choice there is a map:

α : N → N∞

such that: ∏
n:N

U(n) = (
∑
k:N

α(n, k) = 1)

Then: ∑
n:N

U(n) =
∑
n,k:N

α(n, k) = 1

which allows us to conclude. □

Lemma 3.2.2 Let X be a type, TFAE:

(i) X is overtly discrete.

(ii) X is a sequential colimit of finite types.

Proof • (i) implies (ii). Assume X overtly discrete, by using lemma 3.2.1 we know is of the form:

X = (ΣND)/R

with D decidable and R open. Using choice for ΣND we get:

α : (ΣND) → (ΣND) → 2

such that:

R(x, y) = ∃k:Nα(x, y, k) = 1

Then we define:

Xn = (ΣFin(n)D)/L

L(x, y) = ∃k:Fin(n)α(x, y, k) = 1

We have that Xn is a finite type as it is a decidable quotient of a decidable subset of a finite type.
Moreover:

colimnXn = X

as sequential colimit commutes with quotients by equivalence relations.

• (ii) implies (i). Indeed consider a sequential colimit of:

fk : Fin(lk) → Fin(lk+1)

Then:

colimkFin(lk) =

(∑
k:N

Fin(lk)

)
/L

where L is the equivalence relation generated by (k, x) ∼ (k + 1, fk(x)). But
∑

k:N Fin(lk) is a
decidable in N and the equivalence relation generated by a decidable relation on such a type is
open. □
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3.3 Overtly discrete boolean algebras

Lemma 3.3.1 Let B be a boolean algebra, TFAE:
(i) B is countably presented.

(ii) B is a colimit of finitely presented algebras.

(iii) The underlying type of B is overtly discrete.

Proof We will prove (i) implies (ii) implies (iii) implies (i).
• (i) implies (ii) is known.

• (ii) implies (iii) is an immediate consequence of lemma 3.2.2.

• (iii) implies (i). Assume B = (ΣND)/R with. D decidable and R open. Then B is the boolean
algebra 2[N] generated by N quotiented by L generated by:

– For all x : N such that ¬D(x) we have that L(x, 0).

– For all s, t : 2[N] such that s, t ∈ 2[ΣND] and R([s], [t]) we have that L(s, t).

This family of relations is indexed by an open in N, and therefore can be indexed by a decidable
E in N. It is therefore equivalent to the set of relations indexed by x : N with the dummy relation
0 = 0 when ¬E(x). □

Remark 3.3.2 By a similar reasoning, we probably have that abelian groups are overtly discrete if and
only is they are countably presented.

Corollary 3.3.3 Given X compact Hausdorff and Cx a c.p. algebra depending on X, we have that:∏
x:X

Cx

is a c.p. algebra.

Proof By Tychonov, it is overtly discrete. □

3.4 Overt stone spaces

Proposition 3.4.1 Let S be a stone space. TFAE:
(i) S is overt, i.e. for all U : X → Open we have that ∃x:SU(x) is an open proposition.

(ii) For all C : X → Closed we have that ∀x:SC(x) is closed.

(iii) Equality in 2S is decidable.

Proof We prove (i) implies (ii) implies (iii) implies (i).
• (i) implies (ii). Given C : X → Closed we have that:

∀x:SC(x) = ¬∃x:S¬C(x)

as C(x) is ¬¬-stable, and we can conclude using overtness.

• (ii) implies (iii). We have that (ii) implies equality in 2S closed, but it is always open so we can
conclude.

• (iii) implies (i). Given U : X → Open we have that U = ∃n:NUn with Un decidable. We have that:

¬∃x:SUn(x) = ∀x:S¬Un(x)

which is decidable by (iii). Therefore by Markov (TODO is this correct Markov?):

¬(∀n:N¬(∃x:SUn(x))) = ∃n:N¬¬(∃x:SUn(x)) = ∃n:N∃x:SUn(x) = ∃x:SU(x)

So we have that ∃x:SU(x) is indeed open. □
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