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Abstract

The following is a collection of results on A1 homotopy theory in synthetic algebraic geometry
([CCH23]). Authors so far: Peter Arndt, Felix Cherubini, Hugo Moeneclaey, David Wärn.

Contents

1 A1-modal types 1

2 Generalities on the shape modality 3
2.1 About torsors and modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 About A1-localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 A1-coverings 6

4 Shape of projective spaces 7

5 Shape of grassmanians 9

6 Jouanolou’s trick 10

7 What definition to use for motivic homotopy groups? 12

8 Computing πA1

1 (Pn) (assuming some hypothesis) 12

1 A1-modal Types

Definition 1.0.1 A type X is called A1-modal , if all maps γ : A1 → X factor uniquely over 1:

A1 X

1

γ

∃!

Definition 1.0.2 Let SA1 be the nullification modality at A1 and σX : X → SA1 X its unit at a type X.

As a consequence, X is A1-modal, if and only if, SA1 X = X.
The following was observed by David Jaz Myers in 2018 for affine schemes of the form Spec(R[X]/P )

for some special polynomials P . We rediscovered this for a similar class of schemes by using surprising
results on étale schemes.

Proposition 1.0.3 Let X be a type with decidable equality, then X is A1-modal. In particular, every
separated étale scheme is A1-modal.

Proof Let γ : A1 → X. Then γ(0) : X, so we get γ̃ with:

A1 X

A1 1 + (
∏

x:X x ̸= γ(0)) 2

1

γ

γ̃
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We get the factorization by connectedness of A1. By [Che+23][Proposition 4.2.10] any separated étale
scheme has decidable equality. □

Lemma 1.0.4 Let X be a type such that∏
x,y:X

∑
γ:A1→X

(γ(0) = x)× (γ(1) = y)

then SX is a proposition.

Proof First, using the inverse of the map

(SX) ∼= SXA1

to construct (x, y : X)→ σX(x) = σX(y). By direct applications of the dependent universal property of
a uniquely eliminating modality we conclude (x, y : SX)→ x = y. □

Example 1.0.5 (a) Let (X, ∗) be a pointed type with a multiplicative left action of R, such that for
all x : X, we have 0 · x = ∗ and 1 · x = x. Then SX is a proposition by Lemma 1.0.4 and therefore
contractible, using the maps

γx :≡ (r : A1) 7→ r · x : A1 → X.

This entails that D(n), D and all types with an R-module structure are A1-connected.

(b) For any pair of types A,B : U , we have the maps

fA,B :≡ (x : A1) 7→ Ax=0 ×Bx=1

gA,B :≡ (x : A1) 7→ A× (x = 0) +B × (x = 1)

both constructions imply with Lemma 1.0.4 that SU is a proposition and therefore contractible.

(c) For A,B : R-Mod we can use the maps fA,B from above to construct a path where all values carry
an R-module structure. Therefore SR-Mod is constractbile as well. The same argument applies
to all types of structured types closed under product and exponentiation with propositional affine
schemes, e.g. R-Modwqc.

Definition 1.0.6 Let A× :≡ A1 \ {0}.

To describe SA1 A×, we will need a construction which is called coreduction, deRham stack, infinites-
imal shape or crystalline modality. We will use yet another name:

Definition 1.0.7 For any type X, let X̃ denote the formally étale 1 replacement of X.

Proposition 1.0.8 SA1 A× = Ã×.

Proof By ??, the fibers of A× → Ã× are SA1 -connected, so it is enough to show that Ã× is SA1-modal.
Use Zariski choice in the situation

A×

A1 Ã×γ

to get si : D(fi) → A× with ¬¬(si = sj) on intersections. Fix x, y : A1. We will show that ¬¬(γ(x) =
γ(y)). We can assume si = sj , so the si glue to a map A1 → A×, which is a lift of γ. This lift is merely of
the form x 7→ a0 +

∑n
i=1 aix

i with a0 ̸= 0 and nilpotent ai for i > 0, which means ¬¬(γ(x) = a0 = γ(y)).

So the original map A1 → A× is weakly constant and therefore constant. □

1See [Che+23][Section 5.1]
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2 Generalities on the shape modality

2.1 About torsors and modalities

We assume given a modality ⃝ such that for any X the localisation:

X →⃝X

is surjective (e.g. A1-localisation).

Proposition 2.1.1 Let G be a group. The following are equivalent:
(i) The type BG is ⃝-modal.

(ii) For all X, any G-torsor over X is ⃝-étale.

Proof (i) implies (ii). Let f : X → Y be G-torsor, and i : A → B an ⃝-equivalence. Assume given a
square:

A X

B Y

s

i f

We want to prove there is a unique dotted lifting.
First we prove that there exists such a lifting. We get a G-torsor over B by pulling back the one over

Y . By the commutation of the diagram we know that the torsor is trivial when restricted to A, and since
BG is ⃝-modal and i is an ⃝-equivalence there is a unique dotted lift in:

A BG

B

i

So that the torsor is trivial on B as well. From this we get h making the triangle commute:

X

B Y

fh

By the definition of torsors, we know that there is g : A→ G such that for all x : A we have:

g(x) · h(i(x)) = s(x)

But since G is ⃝-modal (as BG is) and i is an ⃝-equivalence, we can lift this map to:

A G

B

g

i
g′

And then y 7→ g′(y) · h(y) makes the square commutes.
Now assume given h1, h2 two such liftings, we consider g : B → G such that for all y : B we have

g(y) · h1(y) = h2(y). We know that g has constant value 1 on A, but there is a unique dotted lift in:

A G

B

1

so g has constant value 1 on all of B and we have h1 = h2.
(ii) implies (i). Saying that BG is ⃝-modal means there is a for any ⃝-connected type X there is a

unique dotted lift in any:
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X BG

1

Since any G-torsor is assumed⃝-étale, by considering the trivial torsor G→ 1 and the fact that⃝-étale
maps are modal we conclude that G is ⃝-modal. Then identity types in BG are ⃝-modal and there is
at most one dotted lift.

To show there merely exists a dotted lift, we need to show that any G-torsor P : X → BG merely is
trivial. We know that X is merely inhabited as the localisation:

X →⃝X = 1

is assumed to be surjective. Since we want to prove a proposition and we know thatX is merely inhabited,
and we can assume x : X. Since torsors are merely inhabited we can assume t : P (x). Consider:

1
∑

x:X P (x)

X X

(x,t)

0

id

□

The right map is a G-torsor so it is assumed ⃝-étale, and then we merely have a dotted lift because the
left map is an ⃝-equivalence, and this means that the torsor merely is trivial.

2.2 About A1-localisation

Lemma 2.2.1 Any SA1-connected map is surjective. In particular, for any type X the map:

ηX : X → SA1 X

is surjective.

Proof This holds because any SA1-connected type is merely inhabited, as any proposition is A1-local so
that for any X we have a map:

SA1 X → ∥X∥ □

Lemma 2.2.2 If X is path-connected then so is SA1 X.

Proof Immediate from lemma 2.2.1. □

Lemma 2.2.3 If colimits indexed by I exists in HoTT (e.g. pushouts, sequential colimits, quotients of
group actions), and we have a map of I-indexed diagrams:

fi : Xi → Yi

such that for all i : I the map fi is a SA1 -equivalence, then the induced map:

colimi:IXi → colimi:IYi

is a SA1-equivalence.

Proof For any A1-local type Z, we have that:

(colimi:IYi)→ Z ≃ limi:I(Yi → Z)

≃ limi:I(Xi → Z) ≃ (colimi:IXi)→ Z

which implies what we want. □

We often use this lemma with the SA1-equivalences:

ηX : X → SA1 X

Next lemma says that A1-pullbacks can be computed as plain pullbacks for A1-étale maps.
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Lemma 2.2.4 Assume a pulllback square:

A X

B Y

where the right map is A1-étale, then it is an A1-pullback, meaning the square:

SA1 A SA1 X

SA1 B SA1 Y

is a pullback square.

Proof This is [CR21][Corollary 5.2]. We give an alternative proof. Any such pullback square is of the
form: ∑

b:B P (SA1 g(ηA(b)))
∑

y:Y P (ηY (y))

B Yg

for some P : SA1 Y → UA1 , by [CR21][Corollary 5.5]. Applying A1-localisation to this square gives:∑
b:SA1 B P (SA1 g(b)))

∑
y:SA1 Y P (y)

SA1 B SA1 Y
SA1 g

which is a pullback square. □

Corollary 2.2.5 Any fiber sequence:
X → Y → Z

with the second map A1-étale is an A1-fiber sequence.

Lemma 2.2.6 A map is A1-étale if and only if it induces equivalences of A1-disks.

Proof This is a [CR21][Proposition 3.7], using surjectivity from lemma 2.2.1. □

Lemma 2.2.7 Given a span:
A→ B ← X

where A and B are A1-local, we have an equivalence:

SA1(A×B X) ≃ A×B SA1 X

Proof Since A×B SA1 X is A1-local, as a limit of A1-local type, it is enough to check that the map:

A×B X → A×B SA1 X

has A1-contractible fibers to conclude. But its fibers are equivalent to fibers of the map:

X → SA1 X

which are indeed A1-contractible. □

Remark 2.2.8 This implies that colimits in A1-local types, which are given by:

colimA1

i:IXi = SA1 colimi:IXi

are universal, despite A1-local types not forming a topos for lack of a universe. This holds for any
localisation, in fact it holds for any orthogonal factorisation system where the left class is stable by
pullback.
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3 A1-coverings

The aim here is to copy the abstract covering theory in [CR21][Section 8], using the A1-shape defined
further down. We cite results from it without proofs. We import the notion of ⃝-étale maps for a
modality ⃝ from [CR21].

Definition 3.0.1 Let ⃝ be a modality (in the sense of the HoTT-Book), then f : X → Y is ⃝-étale, if
the naturality square is a pullback:

X ⃝X

Y ⃝Y

f

Moreover, a map g : X → Y is called ⃝-equivalence, if ⃝g is an equivalence. The (⃝-equivalences,
⃝-étale maps) is an orthogonal factorization system.

Definition 3.0.2 Let Sn :≡ SA1,n be the nullification at A1 and Sn+1.

Definition 3.0.3 An A1-covering of X is a S1-étale maps to X which fibers are sets.

Lemma 3.0.4 The type of A1-covering of X is equivalent to families of A1-local sets over SA1 .

Remark 3.0.5 For any A1-covering Y → X we have the following lifting property:

1 Y

A1 X

∃!

which gives perhaps clearer geometric intuitions.

Definition 3.0.6 The universal cover of a pointed type X is the pointed map X̂ obtained by pullback:

X̂ 1

X S1 X

Proposition 3.0.7 Let X be a type, then X̂ → X is indeed an A1-covering. It is initial among pointed
A1-covering.

Proposition 3.0.8 A pointed A1-covering Y → X is universal if and only if S1 Y = 1.

Proof Since an A1-covering is S1-étale we have a pullback square:

Y S1 Y

X S1 X

so if S1 Y = 1 it is indeed the universal covering.
Conversely the pullback square:

X̂ 1

X S1 X

as a S1-étale right map, so its S1-localisation is still a pullback and we can conclude that S1 X̂ = 1. □
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Proposition 3.0.9 Assume G→ Y → X is a fiber sequence with the right map being a universal cover.
Then we have:

πA1

1 (X) = G

where πA1

1 (X) is defined as Ω(S1 X).

Proof Compose the pullback squares:

G Y 1

1 X S1 X

□

Last result can be generalised to non-universal A1-coverings.

Corollary 3.0.10 Let:
G→ X → Y

be a pointed A1-covering with X being such that S1 X is 0-connected. Then we have an exact sequence
of groups:

0→ πA1

1 (X)→ πA1

1 (Y )→ G→ 0

Proof We have a fiber sequence:
G→ S1 X → S1 Y

where G is a set, so we have a long fiber sequence:

0→ Ω S1 X → Ω S1 Y → G→ S1 X

We can conclude by set-truncating. □

4 Shape of projective spaces

Proposition 4.0.1 We have that:
SA1 P1 ≃ SA1 Susp(A×)

Proof We apply the lemma 2.2.3 to the pushout diagram:

A× A1

A1 P1

□

Lemma 4.0.2 For any natural number n and any V : BA× we have a SA1-equivalence:

V n \ {0} → (V ×)∗n

where (V ×)∗n is the n-th iterated join of V ×. Moreover these maps are natural in n.

Proof It is clear for n = 0 or 1. Inductively we can apply lemma 2.2.3 to the SA1 -equivalences from the
pushout diagram:

V × × V n \ {0} V × V n \ {0}

V × × V n V n+1 \ {0}

to the pushout diagram:

V × × (V ×)∗n 1× (V ×)∗n

V × × 1 (V ×)∗n+1
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Naturality is a straightforward induction. □

Proposition 4.0.3 For any n we have that:

SA1 Pn ≃ SA1

∑
V :BA×

(V ×)∗n+1

Proof Using the fact that:

Pn =
∑

V :BA×

V n+1 \ {0}

with lemma 2.2.3 and lemma 4.0.2. □

One might try to compute the previous type more explicitely using the following result:

Lemma 4.0.4 For any n we have a pushout diagram:

(A×)∗n
∑

V :BA×(V ×)∗n

1
∑

V :BA×(V ×)∗n+1

where the top map is the natural inclusion.

Proof For any V : BA×, we have a pushout diagram:

V × × (V ×)∗n 1× (V ×)∗n

V × × 1 (V ×)∗n+1

So that we have a pushout diagram:∑
V :BA× V × × (V ×)∗n

∑
V :BA×(V ×)∗n

∑
V :BA× V × ∑

V :BA×(V ×)∗n+1

But we have that:
V × ≃ (V =R-Mod R)

so that:
(
∑

V :BA×

V ×) ≃ 1

(
∑

V :BA×

V × × (V ×)∗n) ≃ (A×)∗n

and we can conclude. □

Lemma 4.0.5 For any V : BA×, we have that:

colimn:N(V
×)∗n

is contractible.

Proof Since we want to prove a property, we may assume V = R. Since R× is inhabited by 1, for all n
the map:

(V ×)∗n → (V ×)∗(n+1)

is constant and their sequential colimit is contractible. □

Proposition 4.0.6 We have that:
SA1 P∞ ≃ SA1 BA×
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Proof We consider:
P∞ = colimn:N

∑
V :BA×

V n+1 \ {0}

but this is equivalent to: ∑
V :BA×

colimn:N(V
n+1 \ {0})

which, by lemma 4.0.2 and lemma 2.2.3 is SA1 -equivalent to:∑
V :BA×

colimn:N(V
×)∗(n+1)

but by lemma 4.0.5 this is equivalent to BA×. □

Remark 4.0.7 This is actually part of a larger story, where starting from a higher group G with a
delooping BG, we construct for any n : N a fiber sequence:

G→ Sn
G → Pn

G

where:
Sn
G = G∗n

Pn
G =

∑
V :BG

(V =BG ∗)∗n

Then we have that:
S∞
G = 1

P∞
G = BG

and that Pn+1
G is the cofiber of the map:

Sn
G → Pn

G

Starting from the group S0 this gives the real projective spaces, from S1 this gives the complex projective
spaces, and from A× this gives something SA1-equivalent to the fiber sequences:

A× → An+1 \ {0} → Pn

5 Shape of grassmanians

Definition 5.0.1 For any R-module V , we define Fn(V ) as the type of surjective maps in:

HomR-Mod(R
n, V )

Remark 5.0.2 We identify BGLk with the type:∑
V :R-Mod

∥V = Rk∥

Definition 5.0.3 We define the grassmanians:

Grn,k =
∑

V :BGLk

Fn(V )

A link to another part where the grassmanians are already defined should probably be added...

Definition 5.0.4 We define:
F∞(V ) = colimn:NFn(V )

where we use the maps:
Fn(V )→ Fn+1(V )

given by precomposing with the projection forgetting the last scalar:

Rn+1 → Rn
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Definition 5.0.5 We define:

Gr∞,k = colimn:NGrn,k

Lemma 5.0.6 The maps:

Fn(R
k)→ Fn+k(R

k)

given by precomposing with the projection:

p : Rn+k → Rn

is A1-homotopic to a constant map.

Proof For any t : A1 and f : HomR-Mod(R
n, Rk), we define:

g : HomR-Mod(R
n ⊕Rk, Rk)

g(x, y) = tf(x) + (1− t)y

We check that if f is surjective then so is g. But since we want to prove a property we can assume that
t is invertible or 1− t is invertible, and it is easy to conclude in both cases.

So this indeed gives a map:

H : A1 × Fn(R
k)→ Fn+k(R

k)

Checking that H(0, f) = f ◦ p and that H(1, f) does not depend on f is straightforward. □

Lemma 5.0.7 For any V in BGLk, we have that:

SA1 F∞(V ) = 1

Proof Since we want to prove a proposition we can assume that V = Rk. Then we have that:

F∞(Rk) = colimn:NFnk(R
k)

but by lemma 5.0.6 the A1-localisation of the connecting maps:

Fnk(R
k)→ Fnk+k(R

k)

are constant, so that by lemma 2.2.3 we have that F∞(Rk) is A1-equivalent to a sequential colimit of
constant maps, i.e a contractible type. □

Proposition 5.0.8 We have that:

SA1 Gr∞,k = SA1 BGLk

Proof As sequential colimits commute with dependent sums, we have that:

Gr∞,k ≃
∑

V :BGLk

F∞(V )

but by lemma 5.0.7 and lemma 2.2.3, we know that this is A1-equivalent to BGLk. □

6 Jouanolou’s trick

The goal here is to prove that any quasi-projective scheme is A1-equivalent to an affine scheme. We
roughly follow [Homotopy Algebraic K-theory by Weibel].

Definition 6.0.1 An affine A1-replacement for a scheme X consists of an affine scheme W with an
A1-connected map:

W → X

Typical affine A1-replacement are vector bundles or torsors over a vector bundle.

Lemma 6.0.2 There exists an affine A1-replacement for Pn.
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Proof Consider W the type of projection of Rn+1 of rank 1. There is a map:

p : W → Pn

sending a projection to its image.

The type W is an affine scheme because it is equivalent to the type of square n+ 1 matrices M such
that M2 = M and M characteristic polynomial is Xn(X − 1).

Now we need to check that the fibers of p are A1-connected. Since giving a projection is equivalent
to giving its image and its kernel, any fiber of p is merely equivalent to the type of complements for a
line in Rn+1. So all fibers are merely equivalent and we can just check that the fiber over [1 : 0 : · · · : 0]
is A1-connected. This fiber is the type of matrices where the first line is of the form (1, a1, · · · , an) and
the rest is 0. This is equivalent to An which is indeed A1-connected. □

Lemma 6.0.3 Let p : X → Y be an affine map between schemes. Then the pullback of an affine
A1-replacement for Y along p is an affine A1-replacement for X.

Proof Immediate, as affine schemes are closed under dependent product. □

Lemma 6.0.4 Let U ⊂ Spec(A) be an open subscheme of an affine scheme. Then there exists an affine
A1-replacement for U .

Proof Assume U is of the form D(f1) ∪ · · · ∪D(fn). Then we consider affine scheme:

M = {x : Spec(A), y1, · · · , yn : R | f1(x)y1 + · · ·+ fn(x)yn = 1}

There is a canonical projection map from M to U , using the fact that if f1(x)y1+ · · ·+ fn(x)yn = 1 then
one of the fi(x) is non-zero.

We just need to prove that the fibers of this map are A1-connected. But assume x : Spec(A) such
that say fj(x) ̸= 0, we see that the fiber over x is equivalent to An−1, as the equation:

f1(x)y1 + · · ·+ fn(x)yn = 1

defines yj as a function of the other yks. □

Proposition 6.0.5 Let X be a scheme with an A1-affine replacement. Then any open or closed sub-
scheme of X has an A1-replacement.

Proof Given a closed subscheme of X we just apply lemma 6.0.3 and the fact that closed propositions
are affine.

Given an open subscheme U ⊂ X, we consider Spec(A) → X an affine A1-replacement and U ′ ⊂
Spec(A) the pullback of U . The map U ′ → U is A1-connected as it is a pullback of the A1-connected
map Spec(A) → X. By lemma 6.0.4 we have an affine A1-replacement for U ′, and we can conclude by
using the fact that the composition of A1-connected maps is A1-connected. □

Next proposition could be called Jouanolou’s trick.

Proposition 6.0.6 Any quasi-projective scheme (defined as closed in open in projective space) merely
has an affine A1-replacement.

Proof We just apply lemma 6.0.2 and proposition 6.0.5. □

Remark 6.0.7 The map W → X given in the last proposition is surjective and smooth (as it is a
composition of maps with fibers merely equivalent to affine spaces), therefore W is smooth if and only if
X is smooth. So a smooth quasi-projective scheme has a smooth affine A1-replacement.

Remark 6.0.8 This result can be extended to any scheme with an ample family of line bundles (known
as Jouanolou-Thomason Theorem).
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7 What definition to use for motivic homotopy groups?

This section consists of informal notes by Hugo. It is mostly based on skimming through A1-Algebraic
Topology over a Field by Morel.

There are two possible definitions for motivic homotopy groups:

• The naive one:

πA1

n (X) = πn(SA1 X)

• The refined one:

πA1

n (X) = Ωn(SA1,Sn+1 X)

Traditionally (e.g. In A1-Algebraic Topology over a Field by Morel), the naive one is used, and a
some work is spent proving that it agrees with the refined one in favorable cases, allowing computations.
The proof relies crucially on the fact that we have a base field.

This is formulated using three key definitions:

• A set X is A1-invariant when it is A1-local.

• A group G is strongly A1-invariant when BG (and therefore G) is A1-local.

• An abelian group A is strictly A1-invariant when BnA is A1-local for any n : N.
Then Theorem 1.9 states that for any X we have that:

• The naive πA1

1 (X) is strongly A1-invariant. I think this implies that if X is A1-connected then
∥SA1 X∥1 is A1-local.

• For any n > 1 the naive πA1

n (X) is strictly A1-invariant. I think this together with the previous
point implies that if X is A1-connected then ∥SA1 X∥n is A1-local for any n > 1, using a Postnikov
tower.

• It is conjectured that πA1

0 (X) is A1-invariant. This and the previous two points should imply that
the naive and refined definition of motivic homotopy groups agree, again using a Postnikov tower,
and probably Whitehead.

The proof relies crucially on the base being a field, and we do not expect both definitions to agree in
general.

Remark 7.0.1 Theorem 1.18 states that if X is n-connected, then SA1 X is n-connected. It also states
that this fails when the base is not a field. When using the refined definition this is seems provable using
reasoning on modalities. This seems to contradict both definitions agreeing when the base is not a field.

I believe it would be more fruitful to use the refined definition (as my naming of the definitions subtly
suggests...), but an unpleasant consequence of it is that we cannot reuse results from HoTT (long exact
sequences, universal covers, ...) directly, they have to be proven again. Maybe this work can be done
using any localisation instead of A1-localisation, making it somewhat reusable?

8 Computing πA1

1 (Pn) (assuming some hypothesis)

In this section we use X̃ to denote the formally étale replacement of X. We assume BÃ× is A1-local. We
don’t know if this holds over any base in the model, but we think this holds over a base field.

Remark 8.0.1 It is enough to assume H1(A1, Ã×) = 0 or equivalently H1(Ã1, Ã×) = 0. Indeed we Ã×

is A1-local so BÃ× is A1-separated, and the cohomology condition means it is A1-smooth.

Moreover we use the so-called refined definition of motivic homotopy groups, meaning:

πA1

n (X) = Ωn(Sn X)

Lemma 8.0.2 If X is a smooth scheme then the map:

X → X̃

is A1-connected.
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Proof Since X is smooth the map:
X → X̃

is surjective by ??. So any of its fiber is merely equivalent to N∞(x) for some x : X. By ?? any such
N∞(x) is merely equivalent to N∞(0) in some An, but these are A1-connected by example 1.0.5. □

Lemma 8.0.3 Assuming that BÃ× is A1-local, we have that for all n the map:

Ãn+1/{0} → P̃n

is an A1-cover with fiber Ã×.

Proof The considered map is an Ã×-torsor so we can conclude using proposition 2.1.1. □

Lemma 8.0.4 Assume n ≥ 2, then we have that Ãn+1/{0} is A1-(n-1)-connected, meaning that:

Sn−1(Ãn+1/{0}) = 1

Proof By lemma 8.0.2 we have that Ãn+1/{0} is A1-equivalent to An+1/{0}, but by lemma 4.0.2 this is
A1-equivalent to (A×)∗(n+1). But this type is (n− 1)-connected as for any pointed type X the join X∗n

is n− 2-connected. Therefore it is A1-(n− 1)-connected. □

Proposition 8.0.5 Assuming that BÃ× is A1-local, we have that:

πA1

1 (Pn) = Ã×

for all n ≥ 2 and that:
πA1

1 (P∞) = Ã×

Proof First we treat the case of P∞. By proposition 4.0.6 we have that P∞ is A1-equivalent to BA×,
which is itself A1-equivalent to BÃ×. So we have that:

πA1

1 (P∞) = πA1

1 (BÃ×)

but since BÃ× is simply connected and assumed A1-local, we have that:

πA1

1 (BÃ×) = ΩBÃ× = Ã×

Now assume n ≥ 2. By lemma 8.0.2 we know that:

πA1

1 (Pn) = πA1

1 (P̃n)

Then by lemma 8.0.3 we have an A1-covering:

Ã× → Ãn+1/{0} → P̃n

But by lemma 8.0.4 we have that Ãn+1/{0} is A1-1-connected, so by proposition 3.0.8 the cover is
universal and by proposition 3.0.9 we can conclude that:

πA1

1 (P̃n) = Ã×
□

What about P1?

Proposition 8.0.6 Assuming that BÃ× is A1-local, we have an exact sequence:

0→ πA1

1 (A2/{0})→ πA1

1 (P1)→ Ã× → 0

Proof Very similar to proposition 8.0.5 except we use corollary 3.0.10 instead of proposition 3.0.9, and
we need to prove that S1 A2/{0} is 0-connected. But it is A1-equivalent to A× ∗A× which is 0-connected,
and we know that the map X → S1 X is surjective so S1 A2/{0} is 0-connected as well. □
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